
Page 1 of 7

Files and Recordkeeping with R

Michael A. Covington
Institute for Artificial Intelligence
The University of Georgia

2011 December 10

Introduction

This tutorial assumes you have already started using R, and now you want to know more about
how to preserve and replicate your work.

Recommended reading: Paul Teetor, R Cookbook (O’Reilly).

Importance of keeping records

When you do an experiment, your own notes and files are the only way of guaranteeing the
accuracy and the honesty of your data. Keep good records.

Do not edit the original data files from your experiment (such as the output of MATTR or
CPIDR). Instead, make copies of them, and do all needed editing on the files.

When you do a statistical analysis, keep records of exactly how you did it, so that if any question
arises, you can replicate it. This tutorial will tell you how.

Handling data files

Changing the working directory (folder)

If you tell R what folder your working files are in, you won’t have to give full paths to the files.
To do this, use File, Change dir..., or the R command setwd(path). This is very handy when
you are going to keep several related files in one folder.

Page 2 of 7

Displaying an open file dialog box

Here is how to make R put up an open file dialog so the user can pick a file. This is handy for
use in scripts where you might do the same computation on more than one file.

require(tcltk) # do this just once, to bring in the tcltk library
d <- read.delim(tclvalue(tkgetOpenFile()))

Reading tab-delimited and CSV text files

As you know, R can read data frames from tab-delimited text files and from CSV text files,
respectively, using read.delim("filename") and read.csv("filename"). That is handy
because these kinds of text files are compatible with Excel. In both cases R expects the first row
to consist of column labels.

R also has methods to read other file formats, including fixed-width columns, columns delimitd
with a character you specify, HTML and XML tables, and SQL and other databases. See
reference books (especially R Cookbook) for more information.

Writing a data frame to a tab-delimited or CSV text file

R can output tab-delimited and CSV text files, too. Examples of commands are:

write.delim(dataframe, file="filename", row.names=FALSE)
write.csv(dataframe, file="filename", row.names=FALSE)

If you don’t include row.names=FALSE, each row will start with a field giving the row number.

Editing a data frame in memory

You can use Edit, Data editor... to edit a data frame within R, in a spreadsheet-like interface.
If you do this, make sure to write the data frame out to a file (see previous step) so you’ll have a
record of it.

Page 3 of 7

Recording and replicating R computations

A concrete example

In what follows, we will use, as an example, this short and somewhat silly R session: Create a
vector of numbers, make another vector of numbers by squaring them, plot them against each
other, and show that the two vectors of numbers are correlated.

The workspace

The workspace consists of everything R has in memory, namely the values of the variables and
any user-defined functions. In this example, the workspace contains the two vectors stores in a
and b, and nothing else. It does not include the command history or any printed or plotted
output.

R will ask you if you want to save the workspace when you quit, so that you can resume your
session with the contents of memory still intact. Also, using File, Save Workspace and File,
Load Workspace, you can put the workspace on a file at any time and load it back.

Loading and saving the workspace is useful for dealing with interrupted work sessions but not
for recordkeeping. Workspaces are stored in binary files that other software cannot read.

Page 4 of 7

The history

The history is the set of commands you have executed (but not their results or output). You
can use File, Save History and File, Load History to store the commands on a file and to
bring them back into R’s memory, so that you can recall them with the up-arrow. Loading a
history does not execute the commands; it only makes R remember you have typed them.

In the example, the history is:

a <- c(1,2,3,4,5)
b <- a^2
b
plot(a,b)
cor.test(a,b)

Saving a copy of the console session

Using File, Save To File... you can save the contents of the “R Console” window, both what
you typed and what you got as responses. In our example, this would produce the following text
file:

> a <- c(1,2,3,4,5)
> b <- a^2
> b
[1] 1 4 9 16 25
> plot(a,b)
> cor.test(a,b)

 Pearson's product-moment correlation
data: a and b
t = 8.7831, df = 3, p-value = 0.003109
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 0.7353831 0.9988076
sample estimates:
 cor
0.9811049
>

Page 5 of 7

Saving a copy of the console session is very useful for recordkeeping. You cannot directly load
the session back in, though. Note that the commands all have the command prompt > in front of
them, just as it appeared on the screen.

Saving a copy of a graphic

Saving the R console does not save the graphics window. To do so, simply right-click on the
graphic and you can save it as a Windows metafile or as a PostScript file. You can also copy it to
the clipboard as a metafile (ideal for pasting into Word) or as a bitmap.

The saved graphic includes quite a bit of margin space that might hold titles, etc., but is often
blank. You may need to paste the graphic into Photoshop or GIMP and trim off the unused
white space before using it further.

Scripts

A script is a file of ready-to-execute R commands. Running the script is just like typing in the
commands except that values and output usually aren’t displayed. If they were, a long script
might clutter up the screen in a very tiresome way.

You can force output to be displayed using print() (for values of objects) and cat() (for
messages). Remember that comments start with #.

Here is a short script that replicates our example session:

Example of an R script
a <- c(1,2,3,4,5)
b <- a^2
cat("The value of b is: ")
print(b)
plot(a,b)
print(cor.test(a,b))

Scripts are stored in files with names ending in “.R”. To run a script from a file, use File,
Source R code, or, within R, use the function source(filename). There is also a script editor
in R.

Page 6 of 7

Important technique: Making a script to replicate your work

Whenever you do any important computation in R, it is a good idea to make a script to replicate
it. That way, you can do it again, with or without corrections, in the future.

Very commonly, this script will start with a read.delim() or read.csv() operation to read a
data file. You can keep the script in the same folder as the data file that it reads. Then you can
change R to that folder before running the script, and the script itself need not include the path
to the folder.

To make such a script, start by saving the command history of your computation. Edit it with a
plain text editor to take out unneeded steps and to add comments, cat() to display messages, and
print() to display results, as needed. Then try running it, and make sure it’s right.

And now you have your whole computation, ready to be saved for posterity and replicated as
needed. This should be an important part of your research records.

Defining your own functions

In R, defining your own functions is a completely separate activity from scripting, although you
can (and often will) include a function definition in a script. A script is simply a series of
commands to execute. A function definition is a command, which can be many lines long, and
which can be typed on the console or in a script.

Example of a function

Here’s a rather simple function that takes a number and returns 3 or 4, whichever is nearer the
number you gave:

f <- function(x) { if (x > 3.5) 4 else 3 }

You can have line breaks in the function definition, of course; the final } makes clear where it
ends. There are for loops and many other control constructs that can be used within functions.

Editing a function in memory

To edit a function in memory, use the command

Page 7 of 7

fix(name)

to bring up the editor (where name is the name of the function). If the function does not yet
exist, you will be given an empty framework in which to define it.

Saving a function to a file

Caution! So far, all you’ve done is define and modify the function in memory. If you exit
without saving the workspace, it will be lost.

To save it to a file, use fix(name) to get back into the function editor, and choose File, Save
as... . This is exactly like editing a script – in fact it creates an .R file with the function
definition on it, which can be used as a script to define the function.

	Files and Recordkeeping with R
	Introduction
	Importance of keeping records

	Handling data files
	Changing the working directory (folder)
	Displaying an open file dialog box
	Reading tab-delimited and CSV text files
	Writing a data frame to a tab-delimited or CSV text file
	Editing a data frame in memory

	Recording and replicating R computations
	A concrete example
	The workspace
	The history
	Saving a copy of the console session
	Saving a copy of a graphic
	Scripts
	Important technique: Making a script to replicate your work

	Defining your own functions
	Example of a function
	Editing a function in memory
	Saving a function to a file

