
Developing Prolog Coding
Standards

Michael A. Covington
Institute for Artificial Intelligence

Copyright 2011
Michael A. Covington and/or

The University of Georgia

Reuse or redistribution without the author’s permission
is prohibited by law.

Based on a paper…

Coding Guidelines for Prolog

Michael A. Covington
Roberto Bagnara
Richard A. O’Keefe
Jan Wielemaker
Simon Price

forthcoming in
Theory and Practice of Logic Programming

Based on a paper…

5 authors
>5 opinions!

My goal is to
get you thinking,
not dictate practices to you.

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Motivation

Everybody knows this now,
but it was once news:

Programming languages are for
human beings, not for computers.

The computer would be content with
0100011110001110001111100101010011…

Motivation

Good coding standards

• Make the program easier to read (and debug)

• Eliminate meaningless variation (so that all
changes in layout are significant)

• Make different programmers’ contributions
look alike (for coherence of a large project)

Motivation

1974…

Motivation

Kernighan and Plauger’s key insight:

Writing programs for a human audience
not only
makes them easier to read,
it makes them more reliable
and even makes them run faster!

(Style thinking about what you’re writing.)

Motivation

Your audience might even be
yourself
2 minutes or 2 decades later.

Motivation

So how do we apply
all of this
to Prolog?

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Layout

The most important thing about
program layout
is to care about it
and find some way
to be neat and consistent.

Layout

Semantic principle well known to the
printing industry:

Readers will expect every change in layout
to mean something.

If it doesn’t, you’re asking them to
process noise.

Layout

foo :‐ blah,
blither,
blither2,

blatt.

Nobody can look at this without wondering
why 2 subgoals are indented further.
If there’s no reason, you’ve annoyed them.

Layout

Indent consistently, preferably by 4 spaces.
Put each subgoal on a separate line.

ord_union_all(N, Sets0, Union, Sets) :‐
A is N / 2,
Z is N – A,
ord_union_all(A, Sets0, X, Sets1),
ord_union_all(Z, Sets1, Y, Sets),
ord_union(X, Y, Union).

Layout

Consider using a proportional-pitch font.
More readable, and less like an 80-column punched card!

ord_union_all(N, Sets0, Union, Sets) :-
A is N / 2,
Z is N – A,
ord_union_all(A, Sets0, X, Sets1),
ord_union_all(Z, Sets1, Y, Sets),
ord_union(X, Y, Union).

Layout

Make your editor store the indentations
as spaces, not tabs,
so they won’t change when the file is
opened with another editor.

Layout

Limit the lengths of lines
(the printing industry says 55 characters;
computer industry standard of 80
is definitely too big).

Layout

Limit the number of lines per predicate
(break up complex ones as needed).

Use more vertical space between
different predicates than between
clauses of the same predicate.

Layout

Arrange comments for readability.
Don’t write lists as continuous prose.

% This predicate classifies C as whitespace (ASCII < 33),
% alphabetic (a‐z, A‐Z), numeric (0‐9), or symbolic (all
% other characters).

% This predicate classifies C as:
% ‐ whitespace (ASCII < 33);
% ‐ alphabetic (a‐z, A‐Z);
% ‐ numeric (0‐9); or
% ‐ symbolic (all other characters).

Layout

Space after commas that separate
goals or arguments, but not list elements.

pred([A,B], [D,E]) :‐
goal(A, D),
goal(B, E).

The comma has 3 uses in Prolog,
and any help disambiguating it is welcome.

Layout

Make semicolons and if-then-elses
very prominent through indentation.

pred(A) :‐ One of several ways to do it
(test1(A) ‐>

goal1(A)
;
goal2(A)

).

Most of us have been trained to overlook semicolons!

Layout

Consider using a prettyprinter
for hardcopy.

Consider implementing a good
prettyprinter for us, if you’re so inclined!

Or at least fix up my old PLTeX…

Prettyprinter: LaTeX “listings” package

Prettyprinter: Covington’s PLTeX

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Naming conventions

Don’t worry, the rest of the sections
of this talk
are going to be a bit shorter!

Naming conventions

Capitalization practices are imposed on us
by Prolog syntax.

Variables begin with capital letters.
Atoms and predicate names begin with

lowercase letters.

(I know there are ways to get around this…)

Naming conventions

Use underscores to
separate words in names.

Like_This

like_this

Naming conventions

Make names meaningful.
To convey “sort the list and count its elements”
name your predicate
sort_and_count, not stlacie.

To avoid typing long names,
use a short name temporarily,
then search-and-replace.

Naming conventions

Make all names pronounceable.
xkcd is a good name for a comic strip –
not for a Prolog predicate.

Don’t use multiple names
likely to be pronounced alike.
People remember pronunciations, not spellings.

Worst I’ve ever seen: MENU2, MENUTWO, MENUTOO.

Naming conventions

Within names, don’t express
numbers as words.

pred1, pred2 not pred_one, pred_two

This is a tactic to make spellings
predictable from pronunciations.

Naming conventions

Don’t use digits for words.

list_to_tree not list2tree

unless you’re going for a
high-school L33TSP33K look!

Naming conventions

Mark auxiliary predicates with suffixed
_aux, _loop, _case, _1, _2
or the like.

foo(…) :‐ …, foo_aux(…), …

foo_aux(…) :‐ …

Naming conventions

If a predicate tests a property or relation,
give it a name that is not a command to
do something.

sorted_list, parent
well_formed, ascending
between_limits
contains_duplicates, has_sublists

Naming conventions

If a predicate is best understood as
an action, give it a name that is
a command to do something.

remove_duplicates
print_contents
sort_and_classify

Naming conventions

Choose predicate names to help show
the argument order.

parent_child(X,Y)
rather than
parent(X,Y)
(which is the parent of which?)

Naming conventions

Use descriptive variable names
Input_List, Tree, Result, Count

Decide how to use single-character names
For very localized use:

C could be a single character
I, J, K, M, N could be integers
L could be a list

Naming conventions

Establish practices for naming
threaded state variables
(intermediate results).

foo(State0, State) :‐
foo_step(State0, State1),
foo(State1, State).

No digit after the final name.

Naming conventions

Singular and plural are often handy
for the first and rest of a list.

[Tree|Trees] or even [T|Trees]

Avoid
[First|Rest], [Head|Tail], [H|T]
unless you really can’t say what is in the list.

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Documentation

Begin every predicate (except auxiliary
predicates) with a descriptive comment.

%% remove_duplicates(+List, ‐Processed_List) is det
%
% Removes the duplicates in List, giving Processed_List.
% Elements are considered to match if they can
% be unified with each other; thus, a partly uninstantiated
% element may become further instantiated during testing.
% If several elements match, the last of them is preserved.

If you can’t do this, you’re not ready to code the predicate.

Documentation

Use meaningful names and mode
specifiers on arguments in the comment.

%% remove_duplicates(+List, ‐Processed_List)

Simplest system:
+ expected to be instantiated upon entry
- expected not to be instantiated upon entry
? may or may not be instantiated upon entry

Documentation

You can also specify determinism…

%% remove_duplicates(+List, ‐Processed_List) is det

det Succeeds exactly once and leaves no
backtrack points.

semidet Either fails or is det.
nondet May either fail or succeed any number of

times, may leave backtrack points.
multi Like nondet but must succeed at least once.

Documentation

Auxiliary predicates do not need
full descriptive comments.

That’s why they’re auxiliary –
they’re not called from elsewhere.

But always leave enough comments
to make it clear what you’re doing.

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Peculiarities of Prolog

Predicates should be steadfast.

That is, behavior should not change if
the output argument is already
instantiated to the right value.

?‐ foo(X), X = something.
?‐ foo(something).

Peculiarities of Prolog

Put arguments in this order:
inputs, intermediate values, outputs.

Confusing in C:

fprintf(stream, format, args)
fgets(string, number, stream)

Let’s not repeat that folly.

Peculiarities of Prolog

Put the most discriminating argument first.

That is, put first the one that is most likely
already to be instantiated to a value
that enables you to choose clauses.

That’s first-argument indexing!

Peculiarities of Prolog

Never add a cut to correct an
unknown problem.

Instead, make your program logic correct
without the cut, and then
trim away unneeded searches.

Beginners often misunderstand the cut.

Peculiarities of Prolog

Work at the beginning of the list.

You can get to the first element
immediately; to get to the last element
you must traverse all the others.

Sometimes this means it’s better
to build a list backward.

Peculiarities of Prolog

Remember this idiom:

process_list([Old|Olds], [New|News]) :‐
do_something_to_element(Old, New),
process_list(Olds, News).

process_list([], []).

This traverses the lists forward and is
tail recursive. It is efficient.

Peculiarities of Prolog

Avoid append, assert, retract
when speed is important.

These are slower than most Prolog actions.
You may use them in prototyping
and then modify the algorithm
to speed it up when needed.

Peculiarities of Prolog

Prefer tail recursion, but don’t be fanatical.

A recursive call is tail recursive if
it is the last step of a predicate and
there are no backtrack points left behind.
This saves memory – it is compiled as iteration.

Think about this if a predicate must recurse
1000 times – don’t worry if it’s just 10.

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Debugging and testing

The best code is the one that
does the right computation,
not the one with the most tricks.

Don’t be clever.
Read the source code of UNIX and you
will marvel at how un-clever it really is.

Debugging and testing

When efficiency is critical, make tests.

Perform “microbenchmarks”
to find out which way of doing something
is actually faster
with your compiler.

Use built-in predicate: statistics.

Debugging and testing

Look out for constructs that are
nearly always wrong.

• ! at end of last clause of a predicate
• repeat not followed by !
• append with a one-element list as its first

argument

Debugging and testing

Use the built-in debugger
(spy, trace).

It’s in all the textbooks,
and it still works.

Debugging and testing

Use print (not write) to add
tracing output to your program.

print is more user-configurable than
write (e.g., can abbreviate long lists, or
handle other data specially, or even keep
quiet entirely under specified conditions).

Debugging and testing

Test that every loop or repetition:
• Starts correctly,
• Advances correctly from one

step to the next,
• Ends correctly.

This applies to all programming languages.

Debugging and testing

Test every predicate by failing back into it.

Does it do something unexpected when
you make it backtrack?

Don’t just test: ?‐ my_pred(my_arg).
Test also: ?‐ my_pred(my_arg), fail.

Getting one solution is not enough!

Debugging and testing

In any error situation, either
correct the problem or
make the program crash (not just fail).

Prolog’s “failure” means “The answer is no.”

It does not mean “I can’t do the computation.”

Debugging and testing

Make error messages meaningful.

“Cannot sort a(b,c) because it is not a list”

not

“Illegal argument, wrong type”

Debugging and testing

Don’t waste time checking for errors
that would be caught anyway,
such as arithmetic on non-numbers.

Prolog is an untyped language.
Don’t make the CPU spend all its time
checking types on the remote chance
that they might be wrong.

Developing Prolog coding standards

Motivation
Layout
Naming conventions
Documentation
Peculiarities of Prolog
Debugging and testing
Conclusions

Conclusions

If you’re ready to disagree with
a good bit of what I said,
I’ve done my job.

I’ve started you thinking.

Conclusions

There is no “one true style” for Prolog.

Coding standards are something
you (singular or plural)
need to develop on your own
and even change when the need arises.

Conclusions

But it is much better to have
consistent habits that you can change
than to have no consistent habits!

Developing Prolog coding standards

	Developing Prolog Coding Standards
	Slide Number 2
	Based on a paper…
	Based on a paper…
	Developing Prolog coding standards
	Developing Prolog coding standards
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Motivation
	Developing Prolog coding standards
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Layout
	Prettyprinter: LaTeX “listings” package
	Prettyprinter: Covington’s PLTeX
	Developing Prolog coding standards
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Naming conventions
	Developing Prolog coding standards
	Documentation
	Documentation
	Documentation
	Documentation
	Developing Prolog coding standards
	Peculiarities of Prolog
	Peculiarities of Prolog
	Peculiarities of Prolog
	Peculiarities of Prolog
	Peculiarities of Prolog
	Peculiarities of Prolog
	Peculiarities of Prolog
	Peculiarities of Prolog
	Developing Prolog coding standards
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Debugging and testing
	Developing Prolog coding standards
	Conclusions
	Conclusions
	Conclusions
	Developing Prolog coding standards

