
 Michael A. Covington
 Page 1 of 11

An Atmel AVR Notebook

Michael A. Covington
Artificial Intelligence Center

The University of Georgia
Athens, GA 30602-7415

www.ai.uga.edu/mc

Last revised August 2006

This paper consists of my notes made while learning to use Atmel AVR
microcontrollers with an STK500 starter kit (development system). I present
them here in the hope that they will be useful to others.

The processor

For concreteness, I have chosen to work with the 8-pin ATtiny13 processor. This
presently costs $1.20 per chip at Futurlec (www.futurlec.com). Cheaper
microcontrollers exist (Atmel ATtiny11, Microchip PIC12F508), but they are
appreciably less powerful. The ATtiny11 is distinctly harder to work with because
it does not support ISP (in-circuit serial programming).

There are 32 registers, R0 to R31. Only the upper half of these (R16 to R31) can
use ldi (load immediate) and some related instructions. Thus, it is customary to
use registers starting at R16.

There are also 64 bytes of RAM (data memory) and 1K bytes (512 words) of
program memory (flash ROM).

The ATtiny13 also has a 10-big analog-to-digital converter with 4 inputs. There is
also an analog comparator input (with a built-in 1.1-volt reference) and a timer
with provision for PWM output.

The control bits are called “fuses” and are set in a separate menu in the
programmer. They are not actually fusible links in present-day chips; they are
reprogrammable.

By default, the ATtiny13 uses its internal RC oscillator at 9.6 MHz prescaled by a
factor of 8, giving a clock speed 1.2 MHz. Oscillator calibration is done
automatically at chip initialization. You can read the OSCCAL value and change
it during program execution if you wish.

 Michael A. Covington
 Page 2 of 11

The other options comprise a low-power 128-kHz internal oscillator, external RC
oscillator, or external clock input (but not a crystal; on that point the PIC12F508
has the advantage).

A total of 6 port pins are available (not 5 as on the PIC12F508).

To use PB3 as a port pin, you must be using the internal oscillator.

To use PB5 as a port pin, you must set the “Reset Disabled” fuse. PB5 cannot
source or sink substantial current (its practical limit is about 1 mA).

The ATtiny13 runs on 2.6 to 5.5 V; the ATtiny13V, 1.8 to 5.5 V.

Disadvantages and “gotchas”

Atmel .hex files do not contain the “fuses” (configuration bits). They have to be
set separately on the menu of whatever programmer you are using.

The STK500 development kit has to have jumper wires installed in order to
program microcontrollers. They are different depending on which chip is being
programmed.

Within AVR Studio, the STK500 programming tool does not notice if you have
switched to a different project (a different .hex file) than you were previously
using. You must set the .hex file manually every time you change projects. “Use
current simulator flash memory” is a good option to use, provided you always
simulate your programs before programming the AVR.

The AVR Dragon development kit does not have a socket for the device that you
will be programming. Atmel gives instructions for adding sockets and jumper
wires to suit the CPU you are working with.

STK500 operation

I am using the STK500 development kit with AVR Studio version 4.12 SP3. Right
out of the box, the STK500 firmware needs upgrading and AVR Studio
automatically takes you through this process. Note that you have to unplug the
AT90S8515 that is supplied in one of the programming sockets of the STK500.

To my surprise the STK500 did not come with a power supply. You have to find
your own 10- to 15-volt supply (500 mA) and wire it to the cable supplied. Mine
is rated at 9 V but supplies more than that voltage and works fine.

 Michael A. Covington
 Page 3 of 11

You will need an IC puller or any tool that you can use as a miniature crowbar, or
possibly a pair of needlenose pliers that will open wide, in order to remove
microcontrollers from the sockets on the STK500. If you try to pry them loose
with a screwdriver, you will bend pins on the numerous cable headers.

Also, the STK500 has to be wired together with jumper cables (which are
supplied) to configure it for any particular CPU.

The ATtiny13 came out after the printed/PDF STK500 manual was written. The
AVR Tools User Guide, part of the AVR Studio help system, is up to date. From
it, we learn that the ATtiny13 configuration is:

• Device in socket 3400D1 (blue);

• All jumpers in default positions (they are documented on the bottom of the
board);

• Connect ISP6 to SPROG1 with a 6-pin cable;

• Connect PORTE.RST to PORTB.PB5 with a 1-pin cable;

• Connect PORTE.XT1 to PORTB.PB3 with a 1-pin cable;

• Set ISP frequency (in AVR Studio STK500 menu) to 1/5 the target clock

frequency, or lower. (By default, target clock frequency is 9.6 / 8 = 1.2
MHz.)

No 1-pin cables are supplied with the STK500. I made some with crimp
terminals. Alternatively, you can use the supplied 2-pin cables, leaving half of
each cable unused.

Minimal assembly-language program

Here is a program that just turns on an LED connected to PORTB.PB0 and turns
off an LED on PORTB.BP1 (so you can see that the pins are not all in the same
state, as they might be if the program had had no effect). It can be run on the
STK500 by running a 2-wire jumper from PB0 and PB1 to LED0 and LED1,
without disconnecting the other jumpers needed for programming.

 Michael A. Covington
 Page 4 of 11

The STK500 LEDs turn on when connected to a low (binary 0) output.

Assembly-language syntax

The assembler used by AVR Studio 4 is AVRASM2 and is documented in the
online help. You will also need to read the documentation for the original AVR
Assembler, since the AVRASM2 documentation only covers changes.

By default, numbers are decimal. Hex and binary numbers are written like 0xAB
and 0b10101011 respectively. Numbers that begin with 0 are octal, such as
0253.

LOW(expression) and HIGH(expression) return the low and high bytes of
an expression such as the predefined RAMEND.

All labels have to end with a colon. That’s how this assembler distinguishes
labels from instructions. It doesn’t matter whether the label or instruction starts
in column 1.

Pseudo instructions begin with periods. Some important ones are:

 .def symbol = register Assign a name to a register

 .equ symbol = expression Assign a symbol to an expression

 .set symbol = expression Like .equ but can be reassigned

 .include "filename" Include a file in project directory
 or in set of files provided with
 the assembler, such as tn13def.inc

 .org address Assemble at address

; LEDon.asm - M. Covington 2006
; For ATtiny13.
; Turns on the LED attached to PB0 and
; turns off the LED attached to PB1.

.include "tn13def.inc"

.def temp = R16

start: ser temp
 out PORTB, temp ; port B all high
 out DDRB,temp ; port B all outputs
 cbi PORTB,0 ; lower PB0 to turn LED on
 rjmp start

 Michael A. Covington
 Page 5 of 11

 .cseg Assemble into program memory
 (default)

 .dseg Assemble into data memory

 .eseg Assemble into EEPROM

label: .db expression, expression... Define constant bytes

label: .dw expression, expression... Define constant words

label: .byte number Reserve bytes

Comments are set off with ; or // or /* ... */.

There is a C-like preprocessor whose directives begin with #.

Oddly, there is no .end pseudo instruction, but you can say .exit, which means
“stop reading from this file.”

Delay loops

It would be more fun if we could make the LED blink. For that, we’ll need a delay
loop. Here is a generic delay loop in AVR assembly language:

.def temp = some register in range R16 to R31

 ldi temp,k ; k is the loop count
L1: waste time for n cycles
 dec temp
 brne L1

This loop takes k(n + 3) clock cycles. Here k ranges from 1 to 255, or if preset to
0, is effectively 256. The reason there is no constant term in the formula is that
although we add a cycle by performing the ldi at the beginning just once, we save
a cycle the last time through, when brne takes one cycle instead of two because it
doesn’t branch.

Note that the “waste time” code can be another loop. Then you have a structure
like this:

.def temp1 = some register in range R16 to R31
.def temp2 = another register in range R16 to R31

 ldi temp1,j ; j is outer loop count
L1: ldi temp2,k ; k is inner loop count
L2: waste time for n cycles

 Michael A. Covington
 Page 6 of 11

 dec temp2
 brne L2
 dec temp1
 brne L1

This takes j(k(n + 3) + 3) clock cycles, where, again, j and k range from 1 to 255,
or if preset to 0 will be effectively 256.

A triple loop would take j(k(m(n + 3) + 3) + 3) cycles.

Note that rjmp PC+1 (jump to next instruction) takes 2 cycles whereas nop
takes only one cycle. Each of these is a single-word instruction.

Delay loop example

Here is a concrete example, a 0.1-second delay. At 1.2 MHz, that is 120,000
cycles. Exploring the formula j(k(n + 3) + 3) with a spreadsheet, we find that:

n = 0 k = 199 j = 200 n(k + 3)(j + 3) = 120,000

We can implement this:

 ldi temp1,200 ; outer loop count
L1: ldi temp2,199 ; inner loop count
L2: dec temp2
 brne L2
 dec temp1
 brne L1
 rjmp PC+1 ; 2-cycle no-op
 nop ; 1-cycle no-op

Blinking LED program

Here is a program similar to the previous one except that the LEDs swap states
every 0.1 second (at 1.2 MHz; note that this will not be precise if the internal
oscillator is used and not calibrated).

; LEDblink.asm - M. Covington 2006
; For ATtiny13.
; Blinks the LEDs attached to PB0 and PB1.

.include "tn13def.inc"

.def temp = R16
.def temp1 = R17
.def temp2 = R18
.def mask = R19

start: ldi temp,0b00000010

 Michael A. Covington
 Page 7 of 11

 out PORTB,temp ; initialize port B
 ser mask
 out DDRB,mask ; port B all outputs

blink:
 ; Delay 0.1 sec (1.2 MHz)
 ldi temp1,200 ; outer loop count
L1: ldi temp2,199 ; inner loop count
L2: dec temp2
 brne L2
 dec temp1
 brne L1

 ; Toggle PB0 and PB1
 ldi mask,0b00000011
 eor temp,mask
 out PORTB,temp

 rjmp blink

; End of program

Analog-to-digital conversion

Here is a demonstration of ADC that can be run on the STK500 with a
potentiometer connected across Vtg and GND with its wiper connected to PB4.
(PB2 was not used because it is a programming input and is not open circuit on
the STK500; PB1 and PB0 are fed to diodes.) In this case the upper 2 bits of the
10-bit conversion result are displayed on the diodes.

; adcdemo.asm - M. Covington 2006
; For ATtiny13.
; Analog input to PB4 is digitized and its highest 2 bits
; are shown on LEDs (active low) wired to PB1 and PB0.

.include "tn13def.inc"

.def temp = R16

start: ldi temp,0b00000011
 out PORTB,temp ; initialize port B
 out DDRB,temp ; PB0 and PB1 outputs

 ; Set up ADMUX.
 ; Reference voltage = Vdd (default)
 ; Input is PB4 (ADC2)
 ldi temp,0b00000010
 out ADMUX,temp

 ; Set up ADCSRB
 ; Let the ADC trigger itself (free-running mode)

 Michael A. Covington
 Page 8 of 11

 ; This is already all zeroes

 ; Set up ADCSRA
 ; Run continuously (free-running mode)
 ldi temp,0b11100000
 out ADCSRA,temp

 ; Grab top 2 bits, invert, transfer to LEDs
loop: in temp,ADCH
 com temp
 andi temp,0b00000011
 out PORTB,temp

 rjmp loop

; End of program

ImageCraft C

The free demo version of ImageCraft C (www.imagecraft.com) is limited to 4 KB
of program output after the trial period expires. That is larger than the ATtiny13.,
so it is not a problem. Although my lab has bought a licensed copy of ImageCraft
C, we have not yet installed it because, once installed, it is not easily transferrable
from one CPU to another, so we’re going to have to give the installation careful
thought.

Here is the blinking LED program in C. ImageCraft C does not provide any
precision delay subroutines; the one here is based on one of their examples and
has not been timed precisely.

/* ImageCraft C example of controlling 2 LEDs */
/* on the STK500 */

#include <iot13v.h>

void delay (unsigned char n)
{
 unsigned char a, b, c;
 for (a=0; a<n; a++)
 for (b=0; b<n; b++)
 for (c=0; c<n; c++);
}

void main ()
{
 DDRB = 0b00000011; /* PB1 and PB0 are outputs */
 PORTB = 0b00000011; /* PB1 off, PB0 on */
 while (1)
 {
 PORTB ^= 0b00000011;
 delay(50);
 }

 Michael A. Covington
 Page 9 of 11

}

When you “Compile to Output,” ImageCraft C interfaces directly with the
STK500. However, it provides no easy way to set the fuse bits; for that, it is still
more convenient to use AVR Studio.

Be sure to set the right processor (ATtiny13) in Project Options as well as
including the appropriate include file.

Gnu C Compiler (GCC)

This time-honored freeware compiler (which was used to build Linux and
tremendous amounts of UNIX software) has been ported to the AVR and is
known as AVR-GCC. It is distributed as part of a package called WINAVR
(http://winavr.sourceforge.net).

Beginning with version 4.12, AVR Studio comes partly preconfigured for
WINAVR. You still have to download WINAVR and install it separately. When
you do, AVR Studio finds it and uses it.

Much of the appeal of AVR-GCC is that it provides a large library of predefined
functions.

Here is the AVR-GCC version of the blinking LED program. Precision time
delays in microseconds are also provided, but they use an arithmetic library that
is too big to fit in the ATtiny13.

/* Blinking LEDs in AVR-GCC */

#include <avr/io.h>

#define F_CPU 1200000
#include <util/delay.h>

int main()
{
 DDRB = 0b00000011;
 PORTB = 0b00000010;
 while (1)
 {
 PORTB ^= 0b00000011;
 _delay_loop_2(50000);
 }
}

Both C compilers produced output of about the same size; with a program this
small, much of the code had to do with stack setup and initialization.

 Michael A. Covington
 Page 10 of 11

Gnu C is much more useful on the larger AVR microcontrollers, but as the
example shows, it can be used for quick development of simple programs on even
the smallest ones.

The C string problem

C was designed for computers with a Von Neumann architecture, i.e., a single
type of memory addressing for program and data memory, such as the VAX,
Pentium, or in the world of microcontrollers, 68HC11 or MSP430.

Like most microcontrollers, the AVR series has a Harvard architecture, in which
the instructions that retrieve data from program memory (ROM) and from data
memory (RAM) are different.

String constants normally go into data memory, which, on the ATtiny13, is very
small. Even one string can fill it up. Consult each C compiler’s manual for advice
on how to work around this.

BASCOM (BASIC)

BASCOM-AVR, available from www.mcselec.com, is a BASIC compiler for the
AVR. This is arguably an easier way to program small CPUs than either C or
assembly language. There is a free demonstration version of the compiler as well
as a commercial version (79 euros). The demonstration version will generate up
to 4 KB of code, which is larger than the ATtiny13.

' LEDinBASIC.bas - M. Covington 2006
' Blinking LEDs on PB0 and PB1

 $regfile = "attiny13.dat" ' pull in definitions for the ATtiny13
 $crystal = 1200000 ' inform compiler of clock speed

 Config Portb = &B00000011 ' data direction register
 Portb = &B00000011

L1:
 Portb = Portb Xor &B11
 Waitms 200
 Goto L1

 End

BASCOM will program microcontrollers directly once you tell it where to find
STK500.EXE (a file that comes with the STK500).

BASCOM has very good built-in routines for such common tasks as LCD output,
UART i/o, and I2C i/o. It is integrated with the STK500 and other programmers.

 Michael A. Covington
 Page 11 of 11

Be sure to declare $hwstack = 16 if you want to declare any variables; otherwise
all of RAM is used for stack. The ATtiny13 does not require the $tiny
declaration.

-end-

