Michael A. Covington
Color vision and the VGA.
PC Techniques 1.2:34-39 (June/July 1990).

This article is redistributed by the author with the publisher’s permission. Please
do not redistribute it further; it remains copyrighted.

Please note that this material does not apply directly to present-day computers,
and the software may not work under current versions of Windows. It has not
been tested under Windows 95 or any later version. The author is not prepared to
do any further work on this unless someone employs him as a consultant.

For an up-to-date survey of color vision as applied to computer graphics and
other modern technologies, see Introduction to Color Imaging Science, by Hsien-
Che Lee (Cambridge University Press, 2005).

_ Building Skills in PC Software Development

”‘W""“I'

| human vision and color theory. Once
| you understand the nature of color

| than blue. Color in this sense is tech-

Color Vision
and the

Michael Covington

hree years ago, color on the
PC suddenly got a great deal |
better, with IBM’s introduc-
tion of the VGA. By 1990,
the VGA has come down in price to
the point where many (if not most)
PC owners have it installed. Rather
than being just a curiosity, VGA ana-
log color is now a feature that can be |
exploited in your applications to pro-
duce effects simply not possible with
earlier EGA-style 16-color video. The
VGA offers you 262,144 colors—an
explosion of choices that requires
your understanding a little bit about

and how it affects the human eye,
dealing with VGA analog color isn't a
great deal more than stuffing values
in registers. Let's take a closer (and
full-color) look before we create the
color-mixing program shown in
Color Plate 1.

What is color?—Generally speaking,
color is the wavelength of light. Red
light has a longer wavelength than
green, which has a longer wavelength

nically called hue. Colors also have in-
tensity and saturation. Intensity is the
amount of light reaching your eye.
There’s a minimum intensity—black,
corresponding to no light at all—but
there’s no maximum intensity. Satu-
ration, in turn, is what distinguishes
strong from weak colors—red from

pink, for instance. To reduce the satu-

34 PC TECHNIQUES

VGA

Confused by the maze of VGA colors? This article
shows you how to use the VGA’s 262,144 colors.

ration of a color, you mix it with
white or gray. The minimum satura-
tion is white or gray; the maximum
saturation is monochromatic (single-
wavelength) light, such as the light
from a laser or a nearly monochro-
matic LED.

UGA Color Hixer

B=b3 G 6 BB 8 @ =8 B8 G: 0 Beb)

Zos3

&t B3 EEE
TIER Greconcss Blucsess Saturation

Ietensity

THE chooses color to edit
» + choose o quality to alter
1 Increases and | decreazes that guality

Alt-¥ ends program
Color Plate 1

To visualize hue, intensity, and
saturation, imagine there’s a red LED
in front of you. If you make it
brighter or dimmer, you're changing
the intensity. No matter how bright
you make it, it won’t be pink—which

| is why it’s misleading to describe pink
. as “light red.” To go from red to pink

you'd have to mix in some white
light, which is a change in saturation.
And if you transformed the red LED
into a green one, you'd be changing
the hue.

We’re all color blind—I said color
was wavelength. That's not quite
true. Some colors—the purples and
magentas—do not occur in the spec-
trum; no single wavelength is ever
seen as magenta. The eye sees purples
and magentas only when it receives a
mixture of wavelengths.

Color vision is a highly ambigu-
ous process. If | show you light from
the yellow part of the spectrum, you
will see yellow. If I show you an equal
mixture of red and green light, you
will also see it as yellow, even though
there's no yvellow in it. That is, two
light sources with completely differ-

- ent wavelengths—one pure, the other

a mixture—will look alike to you.
In fact, any hue that the eye can
see can be imitated by mixing the

2ot |

X :
: :) 0
R E
-
0 3
Y lk“ o
o \: ‘EQEL,‘“‘ vl * LRt
L% e el ety
N

Color Plate 2

| Saturation
e —

>

-
>

1.0 =<¢—Imaginary
extreme green

Spectrum (wavelengths marked)

400 i
Imaginary v <— Imaginary
extreme blue 01 02 03 04 05 06 07 08 09 1.0 extremered

X

—

PASCAL: VGA COLOR

| 09 |
| | &
| | 08 /_
l 0.7 l|II Green
| | || cRT phosphor
] | 0.6
i
| y osf
| | \ sten: -
! | 0.4 L lamp \'
| oalr \ it
| [\ T
| | 02r \ TEA
| |\ [
| 01t
| | | i CRT ph
| o} . .
| o 01 02 03 04 05 06

red, green, and blue dots (Color Plate

| 2), or occasionally stripes, that can be

| illuminated by varying the strength

of the electron beam. The dots are SO

close together that the eye cannot

distinguish them. Instead, the light

from adjacent dots mixes and creates

a combined color sensation. For ex-

ample, if the red and green dots are il-

luminated, you will see yellow. (The

dots are not pixels; ideally, they

should be smaller than pixels, so that

each pixel covers several of them.)

| The way the CGA controls the

| dots is simple (Table 1). The CGA's
colors are numbered 0 to 15—that'’s

| binary 0000 to 111 1—and the four

| bits of the color number, in binary,

| control which dots are illuminated.
The three low-order bits control red,
green, and blue respectively, and the
high bit, labeled intensify, tells the
hardware to make all three dots

| brighter. This is sometimes called the
IRGB system. For example, yellow is
intensified red plus green, 1=1, R=1,

| G=1, B=0, which is color code IRGB

| 1110, or 14.

| Instead of four bits per color, the

| EGA uses six, in two sets of three:

! weak red, green, and blue, and strong

| red, green, and blue. This is abbrevi-

ated rgbRGB. There are four possible

brightnesses for each dot: off, weak,

strong, or weak plus strong. For ex-

ample, brown is weak green plus

strong red. This gives a total of 64

possible colors.

Register madness—The EGA also in-
troduced color registers to map the

36 PC TECHNIQUES

URE 3—Light Sources Plotted on the CIE Chart

Encloses all visible colors |

Green LED ‘

Encloses all colors displayable on screen |

Red CRT phosphor
_Red LED |

-

osphor

I VI R

|
= |‘
J

| color numbers onto the actual colors.
After all, there are still only four bits
per pixel, and hence only 16 colors
usable at a time. For each of the 16
colors, the EGA has a register in
which the actual color definition is
stored.

Table 2 shows how this works.
Color 6, for example, is normally
brown because color register 6 defines
it as weak green plus strong red, a
combination that looks brown on the
screen. The definition is expressed in
rgbRGB format as the binary number
010100, equivalent to the decimal
number 20. You can change color 6
to red, or purple, or whatever you
like, by storing a different number in
the color register. This is done with
SetPalette in Turbo Pascal and si milar
procedures in other languages.

Even that isn’t powerful enough
for the VGA's 262,144 colors. On the
VGA, each color is defined by three
intensities—red, green, and blue—
each on a scale of 0 to 63. These are
stored in a set of 256 video DAC regis-
ters, normally used in blocks of 64.

" Values can be stored in DAC registers
with Turbo Pascal’s SetRgbPalette.

| In 320 x 200 256-color mode, the
color code for each pixel refers to a
DAC register directly. In the other
graphics and text modes, there are
still only 16 colors usable at a time,
and a mapping scheme like that of
the EGA comes into play. Color num-
bers map onto 16 EGA-like color reg-
isters, and these in turn contain not

| color definitions, but pointers to the
DAC registers (Figure 4).

i

| F TABLE 1—CGA Color Mixing| |

Color
Number | R G B Color

0 black

1 blue

0 green

1 cyan (blue + green)
0 red

1 magenta (red + blue)
0 brown (red + green)
1 gray
0

1

0

1

0

1

0

1

SgomNaLbEwWN—O

dark gray (intensified black)
intensified blue

intensified green

intensified cyan

intensified red

intensified magenta
intensified brown (= yellow)
intensified gray (= white)

[P RTINSy _ . 1 I - — 1~ I~ I =
Mmoo OOOm—2—=—000C

TR NN A AN T O} wowonowonn

|
|

A TABLE 2—EGA Color Mixing

olor Color Register

C
Number r g b Color

=
[a]
=

black
blue

green \
cyan (blue + green) |
red

magenta (red + blue)!
brown (red + green) l

|

HwN—O

Wowomowonomonw

L]

gray

dark gray
(intensified black)
intensified blue
intensified green] ‘

N LB W= O
L

= i =
——c0oCcCOoO0OCC
om0 O0O0O0OCO
——pooOoOOOCOC
oO—=—=—=—=0000
o—-cO0O0—=—=00
o—-o—-o—-0=0

=

1
1
| 112

13
]\14

intensified cyan
intensified red
intensified magenta | ‘
intensified brown
(= yellow)
intensified gray

—_
P — O W00~
wonwonononon
— kb
ot b ek

0
0
0
1
1
1

o Ov Oy Ln bh bn
— ok b ot

|'I.5 63=111111

|
|
So if you store, say, 57 in color |
| register 8, you're no longer defining
 color 8 to be rgbRGB 111001 (decimal |
| 57); instead, you're defining color 8 |
as whatever is in DAC register 57. For- |
| tunately for EGA aficionados, the de-
| fault DAC register values match the |
EGA's rgbRGB codes rather closely.
Herein lies a trap for the unwary. |
| Colors 0 to 15 do not, by default, map |
| onto DAC registers 0 to 15. You can |
easily make them do so with SetPal-
ette, and I recommend doing thisif |
you are going to work with DAC reg- ‘
| isters. It makes life simpler. |
Analog video—DAC stands for digi- |
tal-to-analog converter. The CGA and
EGA transmit color definitions to the
monitor digitally, in IRGB or rgbRGB
format, but the VGA outputs analog
video—a voltage level that indicates
| the brightness of each color on a con- |
tinuous scale. This analog signal |
comes from the DAC.

Whereas a digital signal merely
has to be recognizable as yes or no, an

| analog signal has to be transmitted

with no change at all. Even the slight-
est distortion will affect the picture.

This has important conse-
quences. Many a $700 monitor dis-
plays a blurred picture because of a
$15 cable. Analog video has to travel
through impedance-matched 75-ohm
coaxial cables to avoid degradation.
[BM’s monitor cables have miniature
coaxial cables inside them, but some
competitors’ products don’t. Beware
the cheap VGA extension cord.

The mixer program—So if you have
262,144 colors, how do you decide
which ones to use? That's the purpose
of the color-mixing program (Listing
1). It displays three colors on the
screen, including examples of all
combinations of these colors as text
and background. You pick a color to
edit and then alter its hue, intensity,
or saturation.

The program uses a number of
tricks to keep the code short. It has its
own version of SetRgbPalette. (Turbo
Pascal’s doesn’t work in text mode—
an unfortunate oversight.) The four
big color patches are displayed in col-
ors 1, 2, 3, and 4, which map onto
DAC registers 1, 2, 3, and 4 respec-
tively, and only the DAC registers are
altered during execution.

The main loop accepts keystrokes
and stores them in the string Keys.
This string normally has zero or one
elements—so why is it a string? Be-
cause upon receiving a PgUp or PgDn,

| the program stuffs five up or down
| arrows, respectively, into Keys and

then lets the up and down arrow rou-
tines process them. Devious but con-
cise.

How colors are manipulated—For
each color, you can alter the red,
green, or blue levels, intensity, or
saturation. Altering the red, green, or
blue level in the color definition is
simple enough. Altering intensity is
almost as simple—just increase or de-
crease all three colors in unison.
Here, an interesting problem
arises. Suppose a color starts out as,
say, red-green-blue 20-22-33, and you
reduce the intensity to a tenth of its
original value. The best you can do is
use 2-2-3, which doesn’t quite pre-
serve the ratios between the numbers.
Yet if you then raise the intensity,

' A FIGURE 4—The VGA Color Registers

On the VGA, the 16 color registers contain pointers to the 256 DAC registers (used in
blocks of 64). Default colors and color register contents are the same as on EGA.

Color Color DAC register
number register address R
0 » 00— O 0
1T — 1 N 0
2 =2 :2 — 2 0
3| =i |3 = 3: 0
4 —» 4 = 42
§ == 5 = 5 42
6 — 20
7 = f > 7: 42
8 —» 56
9 — 57 — | — 20: 42
10 — 58 — “
11 —=§—— | 56: 21
12— 60 — | |——* 5% 21
| 13 — R 58: 21
| 14 — 9: 21
15 — 63 1 60: 63
4 — 61: 63
| | —> 62: 63
> 63: 63

G B

0 0 black

0 42 blue
42 0 green
42 42 cyan

0 0 red

0 42 magenta
42 42 gray
21 0 brown
21 21 dark gray
21 63 light blue
63 21 light green
63 63 light cyan
21 21 light red
21 63 light magenta
63 21 yellow
63 63 white

x A
|

‘ User-modifiable

| you'd like it to come back up to 20-

22-33, not 20-20-30.

For this reason, the color values
are stored internally in floating-point.
You can’t really reduce 20-22-33 to 2-
2-3; instead, it will be 2.0-2.2-3.3,
which rounds to 2-2-3 for copying
into the DAC register but preserves
the original ratios so that the original
color can be recovered by multiplying
the values by equal factors.

Changing saturation is even
trickier. The basic idea is to increase
saturation by increasing the strongest
color and decreasing the weaker ones.
If one of the color values is already 0,
saturation cannot be increased. Oth-
erwise, the highest color value (called
Top) remains the same while the
other two are decreased in proportion
to how far away from Top they al-
ready are. This isn’t a perfect way to
adjust saturation, but it's convenient
and subjectively satisfying. Decreas-
ing saturation works the same way, in
the opposite direction.

Using what you've made—Finally,
here are some hints for using screen
colors effectively.

1. Choose colors with lower satura-
tion. Screens don’t have to be
gaudy. A silver-on-vellum effect
(yellowish gray on maroon) is
pleasant for full screen editing.
Black, brown, or maroon on gray
also works well.

Also user-modifiable

2. Never use red type on a blue or
green background, or vice versa.
The human eye cannott focus red
and blue together; a blurred effect
results, no matter how sharp the
screen is.

3. Remember that some VGAs have
monochrome monitors; if you
want two colors to contrast, make
them differ in intensity as well as
hue. To preview your VGA graphics
in monochrome mode on a color
monitor, execute this code:

VAR r: Registers:
r.ah := $10;

r.al := $1B;
r.bx :=0;

r.cx := 255;
Intr($10,r);

This reprograms all the DAC registers
with the gray-scale equivalents of the
colors they previously contained.

Michael Covington does artificial intelli-
gence research at the University of Geor-
gia, is the author of Astrophotography
for the Amateur, and is the co-author of
Dictionary of Computer Terms and
Prolog Programming in Depth.

June/July 1990 37

PASCAL: VGA COLOR

A LISTING 1—VGAMIX.PAS

PROGRAM VgaColorMixer:
{ Michael A. Covington 1990 }

USES Crt.Dos;:

CONST (Quality: ARRAY[1..5] OF String[l2] =
('Redness','Greenness’,'Blueness’,'Saturation','Intensity'):

CONST

C: INTEGER = 1; { Color being edited)

Q: INTEGER = 1: { Quality being edited }

R: ARRAY[1..3] OF REAL = (63, 0, 0): { Red component }

G: ARRAY[1..3] OF REAL = { 0, 63, 0): { Green component]

B: ARRAY[1..3] OF REAL = (0, 0, 63): { Blue component }

PROCEDURE SetRabPalette(ColorNum,Red,Green,Blue: INTEGER);
[Like the SetRgbPalette procedure provided in GRAPH.TPU, but
does not reguire .BGI files. Copy and use in your own programs.]
VAR

R: Registers;
BEGIN

R.ax := $1010:

R.bx := ColorNum;

R.dh := Red;

R.ch := Green;

R:cl := Blue:

Intr($10,R)
END;:

PROCEDURE HideCursor;
{ For VGA and most others. Undone by textmode(co80).]
VAR

R: Registers;

BEGIN
R.cx := $2000; { Start cursor on scan line $20, end on $00 }
R.ah := 1; { That is, end it before it starts }
Intr($10,R)

END:

PROCEDURE Block(Left.Upper,Right,Lower,Color: INTEGER):
VAR
Row, Col: INTEGER:
BEGIN
TextColor(Color):
FOR Row := Upper TO Lower DO
FOR Col :~= Left TO Right DO
BEGIN
GoToXY(Col.Row): write(#219)
END;
TextColor{White);
END:

PROCEDURE Box(Left,Upper,Right,Lower,Color: INTEGER);

BEGIN
Block(Left,Upper,Left,Lower,Color);
Block(Right,Upper,Right,Lower Color);
Block(Left,Upper,Right,Upper,Color);
Block(Left,Lower,Right,Lower,Color)

END;

PROCEDURE WriteCentered(Msg:5tring:Row,Color: INTEGER);
BEGIN

GoToXY(40-(length(Msg) div 2),Row);

write(Msg)
END;

PROCEDURE Writelnverse(Msg:5tring);
BEGIN
TextBackground(White);
TextColoriBlack):
write(Msg);
TextColor(White);
TextBackground{Black)
END;

PROCEDURE UpdateColors:
| Updates just those parts of the screen that change }
[when the user alters a color quality }
VAR
J. red, green, blue: INTEGER;

BEGIN
SetRgbPalette(4,round(R[C]),round(GLC]),round(BLC]));
{ Color 4 will always be the color currently being edited }
FOR J:=1 TO 3 DO
BEGIN
SetRgbPalette(j.round(R[j1).round(G[j1).round(BLj1)):
{ Label the colors }
TextColor(White):
GoToXY(20%j-3,9);:
IF j=C THEN
WriteInverse('Color '+chrlord('0')+j})
ELSE
write('Color “+chriord(°0°)+j));
GoToXY(20%3-7.7):
IF j=C THEN
TextColor(White)
ELSE
TextColor(LightGray);
Write(‘R=',round(R[j1):2.
' G=',round(G[jl):2.
' B=",round(B[J]):2);
END;
{ Update the menu of gqualities)
TextBackground(Black); TextColor(White):
GoToXY(11,19);
FOR j:=1 TO 5 DO
BEGIN
IF j=Q THEN
WriteInverse(Quality[j1)
ELSE
Write(Quality[j1)
Write(*)
END
END;

PROCEDURE UpdateScreen;
VAR
J.k: INTEGER;:
BEGIN
TextMode(CoBO); (Clears screen and resets colors }
HideCursor;
UpdateColors;
Box(1,1,80,21,DarkGray);
WriteCentered('VGA Color Mixer’3White);
WriteCentered('TAB chooses color to edit',22.White);
WriteCentered(#$18 + * ' + {#$1A + ' choose a quality to alter’,
23, White);
WriteCentered(#$18 + ' increases and ' + #3519 + ' decreases that
quality', 24,White);
WriteCentered('Alt-X ends program',25,White);
{ Color swatches }
Block({11,5,29.6.1):
Block(31,5,49,6,2);
Block(51,5.69,6,3);
{ Large patch of the color currently being edited }
Block(11,11,69,15.4);
{ Text samples)
GoToXY(10,17);
FOR j:=1 to 3 DO
FOR k:=1 TO 3 DO
IF j<>k THEM
BEGIN
TextBackground(Black); Write(' ');
TextBackground(j):
TextColor(k):
WriteG “akgton':ET M)
END;
TextBackground(Black):
END;

38 PC TECHNIQUES

FUNCTION Min(X.Y,Z:REAL):REAL;
BEGIN
IF X%<Y THEN
(Minimum is not Y }
IF ¥<Z THEN Min:=X ELSE Min:=Z
ELSE
{ Minimum is not X }
IF Y<Z THEN Min:=Y ELSE Min:=Z
END;

FUNCTION Max(X,Y,Z:REAL):REAL;
BEGIN
IF X>Y THEN
{ Maximum 1s not ¥ }
IF X»Z THEN Max:=X ELSE Max:=Z
ELSE
{ Maximum is not X }
IF ¥>Z THEN Max:=Y ELSE Max:=I
END;

VAR [Main }
Keys: string:
Top, Factor: real:

BEGIN

UpdateScreen;
WHILE TRUE DO
BEGIN
IF Keys = ** then Keys := ReadKey;
CASE Keys[1] OF
#09 : (Tab }
BEGIN
¢ :=C MOD 3 + 1;
UpdateColors
END;
#27 : [First byte of any non-ASCIL key } { do nothing };
#72 : [Up arrow }
BEGIN
CASE 0 OF
1: IF RI[C]I<62.5 THEN R[C] := R[CI+1:
2: IF GLC]<62.5 THEN GLC] := G[CI+1
3: IF BL[C1<62.5 THEN BIC] := BLCI+1:
4: BEGIN [Up saturation }
Top := Max(RLC],GLC].BLC]):
IF Min(RLC1,GLC].BLC]) > 0.5 THEN
BEGIN
Factor := 1/Abs(Top-Min(R[C].GLC1,BLCI)});
RIC] := RLC] + Factor*(RLC] - Top);
GLC] := G[C] + Factor*(GL[C] - Top):
BLC] := BLC] + Factor*(B[C] - Top)
END

Keys = ""3

END;
5: [Up intensity 1}
1F Max(R[C],GLC].BLC]1)<62.5 THEN
BEGIN
RECT = RICI*1.01;
G{C] := GLCI*1.01:
B{C] := B[C]*1.01

END
END;
UpdateColors
END:

#73 : { Pgup = five up arrows]}
Keys := Keys[1I+#72+#72+72+{#72+#72+copy (Keys,2,255);
#80 : (Down arrow]
BEGIN
CASE Q OF
: IF R[C]»=0.5 THEN R[C] := R[C]-1;
2: IF GLCI>=0.5 THEN G[C] := G[C]-1:
3: IF B[C]>=0.5 THEN B[C] := B[CI-1:
4: [Down saturation }
BEGIN
Top := Max(R[C].GLC],.BLCI1);
IF (Top-Min(RLC].GLCI.BLCI)) > 0.5 THEN

Factor := 1/Abs(Top-Min(R[C].G[C],BLCI));

‘ BEGIN

REC] := RIC] - Factor*(RLC] - Top):
GLC] := G[C] - Factor*(G[C] - Top):
| B[C] := B[L] - Factor*(BLC] - Top)
END
END;
5: { Down intensity
BEGIN
RICI:=RLCI*0.99:
G[C]:=GLC]1*0.99;
B[C]:=BLC1*0.99
END
END;
UpdateColors
END;
#81 : [Pgbn = five down arrows }

#75 : { Left arrow |

BEGIN
IF 0 > 1 THEN Dec(Q):
UpdateColors

END:

#77 = BEGIN { Right arrow)
IF 0 < 5 THEN Inc(Q):
UpdateColors

END;

45 = BEGIN { AIt-X)

TextMode(CoB80); { Reset colors }
| Halt
END

END {Case}:

Delete(Keys,1,1); [Eat the keystroke that was just acted on }
END

‘ END.

Keys := Keys[1]+#80+80+#80+#B0+#80+copy(Keys.2 255} ;

We get you
Inside! all
the right places...

Software performance analysis demands the best and
Inside! has the right credentials. Now the best gets
even better with the addition of three powerful
analysis modes.

Inside! analyzes your program in real-time,
timing each instance of a function, source
line or arbitrary code fragment, all with
microsecond accuracy and without source

code madification. Utilize the following modes to know
where to focus your optimization efforts for max-
imum reward.

’

B Non-executed functions or
source lnes

W M5-005 function timing

W (Overlay and assembly
language support

Inside! is available for popular compilers . . .

W Microsoht QuesBASIC B U7 TopSpeed Modula- 2

W Microsaft FORTRAN BWATCOM C
B Logech Madula-2 W ZoechCs «

W Function/procedure timing
W Cail target timing

W Source ine timing

W Ashitfary event timing

W Tt C

B Twrbo Pascat

B Marosolt C/QuicxC
Call or write today for a free brochure and the
latest list of Inside! products. Thousands of C,
BASIC, FORTRAN and Modula-2 programmers
already have the Inside! advantage working for
them—shouldn’t you?

To Place Orders

(800)537-5043 $12 9_0.
Product Support EACH
(508)478-0499 Satistaction guaranteed

Visa/Mastercard/C.0.0. Accepted

Paradigm Systems
PO. Box 152 Milford, Massachusetts 01757

Ansade! is @ tademark of Pasackgm Systems

PARADIGVI

BYHTEME. PUCORPCRATED.

Circle 45 on reader service card

June/july 1990

	ColorVisionCoverSheet.pdf
	ColorVisionVGA.pdf

