MICHAEL A. COVINGTON

preempted(KB Rule) :-
Rule =.. [_,Head,_],
contrary(Head Contrary),
strict_der (KB,Contrary),
1

preempted (KB,Rule) :-
Rule =.. [_,Head,_],
contrary(Head,Contrary),
- clause(Contrary,Body),
Body \== true,
def der(KB Body) .

preempted(KB (Head := Body)) :
contrary(Head Contrary),
def_rule(KB, (Contrary := Cq
def_der (KB,Condition),
sup_rule((Contrary := Condj
]

DONALD NUTE

ANDRE VELLINO

Contents

I The Prolog Language

1 Introducing Prolog 1
1.1 TheldeaofProlog 1
12 HowPrologWorks 2
13 VarietiesofProlog,, . 4
14 APractical KnowledgeBase 4
1.5 Unification and Variable Instantiation 9
16 Backtracking 10
17 PrologSyntax 14
18 DefiningRelations 16
19 Conjoined Goals (“And”) 18
110 DisjointGoals(“Or”) 19
111 NegativeGoals (“Not”) 20
112 TestingforEquality., 22
1.13 Anonymous Variables 24
1.14 Avoiding Endless Computations 25
1.15 Using the Debugger to Trace Execution. 27
1.16 Styles of Encoding Knowledge 28
1.17 BibliographicalNotes 30

4.10

2 Constructing Prolog Programs 31
21 Declarative and Procedural Semantics| 31
2.2 Output: write,nl, display 32
23 ComputingversusPrinting_ 34
24 Forcing Backtracking with fail 34
25 PredicatesasSubroutines 37
26 InputofTermsiread 38
27 Manipulating the KnowledgeBase 40
2.8 Staticand Dynamic Predicates 42
29 Moreabout consult and reconsult 43
2.10 File Handling: see, seen, tell, told 45
211 AProgramthat “Learns” 46
2.12 Character Input and Output: get, getO,put 48
213 ConstructingMenus L 51
214 ASimple ExpertSystem 54

3 Data Structures and Computation 61
31 Arithmetic. 61
3.2 Constructing Expressions 63
3.3 Practical Calculations 65
34 Testing for Instantiation 67
35 Lists 69
36 StoringDatainLists, 71
37 Recursion 72
38 CountingListElements_. 74
39 Concatenating (Appending) Lists 75
3.10 Reversinga ListRecursively 77
311 ATFasterWaytoReverseLists 78
312 CharacterStrings 79
3.13 InputtingalineasaStringorAtorm 81
314 Structures 83
315 The”OccursCheck” 85
3.16 Constructing Goals at Runtime 85
3.17 DataStorageStrategies 87
3.18 BibliographicalNotes 89

4 Expressing Procedural Algorithms 91
41 ProceduralProlog 91
42 Conditional Execution 92
4.3 The “Cut” Operator () 94
44 RedCutsandGreenCuts 96
45 WhereNottoPutCuts 97
4.6 Making a Goal Deterministic WithoutCuts 98
4.7 The “If-Then-Else” Structure (=>) 99
48 Making a Goal Always Succeed or AlwaysFail 99
49 Repetition Through Backtracking 101

Recursion 103

411 More about RecursiveLoops
412 Organizing RecursiveCode
413 Why Tail Recursionis Special
414 Indexing
415 Modularity, Name Conflicts,and Stubs
416 How to Document Prolog Predicates
4.17 Supplement: Some Hand Computations
4.18 Bibliographical Notes
Reading Data in Foreign Formats
51 The Problem of Free-FormInput
52 Converting Strings to Atoms and Numbers
53 Combining Our CodewithYours
54 ValidatingUserInput
55 ConstructingMenus L.
56 Reading Fileswithgetbyte
5.7 File Handles (Stream Identifiers)
58 Fixed-LengthFields
3.9 Now What Do You DowiththeData?, ..
510 Comma-DelimitedFields
511 BimaryNumbers
512 Grand Finale: Reading a Lotus Spreadsheet
Prolog as Its Own Metalanguage
6.1 Language and Metalanguage
6.2 Collecting Alternative SolutionsintoaList.
6.3 Usingbagofandsetof
6.4 Finding the Smallest, Largest, or “Best” Solution
6.5 Intensional and Extensional Queries
6.6 Operator Definitions
6.7 Giving MeaningtoOperators
6.8 ProloginProlog
6.9 Extending theInferenceEngine
6.10 Personalizing the UserInterface.
6.11 BibliographicalNotes
Advanced Techniques
71 StructuresasTrees
72 ListsasStructures, ...
7.3 How to Search or Process Any Structure
74 Internal RepresentationofData
7.5 Simulating ArraysinProlog L. -
76 Differencelists L.
77 Quicksort L
7.8 Efficiency of Sorting Algorithms,
79 Mergesort
710 BinaryTrees

vi

II

10

711
7.12
7.13
7.14

Treesort
Customized Arithmetic: A Replacementforis
Solving Equations Numerically
Bibliographical Notes

Artificial Intelligence Applications

Artificial Intelligence and the Search for Solutions

8.1
8.2
8.3
8.4
85
8.6
8.7
8.8
8.9
8.10
8.11
8.12

Artificial Intelligence, Puzzles,and Prolog
ThroughtheMaze
Missionariesand Cannibals
TheTriangle Puzzle
ColoringaMap
ExaminingMolecules L.
Exhaustive Search, Intelligent Search, and Heuristics
Scheduling
Forward-Chaining and Production-Rule Systems
ASimple Forward Chainer
ProductionRulesinProlog
Bibliographical Notes

A Simple Expert System Shell

9.1

92

9.3
94
9.5
9.6
9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

ExpertSystems
Expert Consultants and Expert Consulting Systems
Parts of an Expert Consulting System
ExpertSystemShells oL
Extending the Powerof Prolog
XSHELL: The MainProgram
Asking about Propertiesin XSHELL
Asking about Parametersin XSHELL
XSHELL's Explanatory Facility
CICHLID: A Sample XSHELL KnowledgeBase
A Consultation with CICHLID,
PAINT: A Sample XSHELL KnowledgeBase
Developing XSHELL KnowledgeBases
Bibliographical Notes

An Expert System Shell with Uncertainty

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8

Uncertainty, Probability, and Confidence
Representing and Computing Confidence or Certainty
ConfidenceRules
The CONMAN Inference Engine
Getting Information fromtheUser
The CONMAN Explanatory Facilities
TheMainProgram
CONMAN KnowledgeBases

11

12

10.9
10.10

No Confidence in “Confidence”
Bibliographical Notes -

Defeasible Prolog

11.1
11.2
11.3
114
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17
11.18
11.19
11.20
11.21
11.22
11.23
11.24

Nonmonotonic Reasoningand Prolog
New Syntax for Defeasible Reasoning
StrictRules,
Incompatible Conclusions
Superiorityof Rules
Specificity
Defining Strict Derivability inProlog
d-Prolog: Preliminaries
Using DefeasibleRules
Preemption of Defeaters
Defeasible Queries and Exhaustive Responses
Listing Defeasible Predicates
Consulting and Reconsulting d-Prolog Files
The d-Prolog Dictionary
Rescinding Predicates and Knowledge Bases
Finding Contradictions
A Special Explanatory Facility
ASuiteof Examples
Some Feathered and Nonfeathered Friends
InheritanceReasoning
Temporal Persistence
The ElectionExample
d-Prolog and the Closed World Assumption
Bibliographical Notes

Natural Language Processing

12.1
12.2
12.3
124
12.5
12.6
12.7
12.8
129
12.10
12.11
12.12
12.13
12.14
12.15

Prolog and Human Languages
Levels of Linguistic Analysis
Tokenization,
TemplateSystems
Generative Grammars
ASimpleParser. L
Grammar Rule (DCG)Notation
Grammatical Features
Morphology
ConstructingtheParse Tree
Unbounded Movements
Semantic Interpretation
Constructing Representations
DummyEntities,
BibliographicalNotes

viii

A Summary of ISO Prolog

Al SyntaxofTerms.
A2 ProgramStructure
A3 ControlStructures
A4 ErrorHandling
AL Flags
A6 Arithmetic.
A7 ImputandOutput.
A8 OtherBuilt-In Predicates
A9 Modules
B Some Differences Between Prolog Implementations
B.1 Introduction.
B.2 Which Predicatesare Built-In?
B.3 Variation In Behavior of Built-In Predicates
B4 ControlConstructs,
B.5 Syntaxand Programlayout.
B.6 Arithmetic.
B.7 InputandOutput.
B.8 Definite-Clause Grammars
Bibliography

Index

455
456
461
463
465
466
468
469
474
481

485
485
486
486
488
490
491
492
494

497

502

Preface

Prolog is an up-and-coming computer language. It has taken its place alongside Lisp
in artificial intelligence research, and industry has adopted it widely for knowledge-
based systems.

In this book, we emphasize practical Prolog programming, not just theory. We
present several ready-to-run expert system shells, as well as routines for sorting,
searching, natural language processing, and even numerical equation solving.

We also emphasize interoperability with other software. For example, Chapter
5 presents techniques for reading Lotus spreadsheets and other special file formats
from within a Prolog program.

There is now an official ISO standard for the Prolog language, and this book
follows it while retaining compatibility with earlier implementations. We summa-
rize the ISO Prolog standard in Appendix A. It is essentially what has been called
“Edinburgh” Prolog. Our programs have been tested under Quintus Prolog, Arity
Prolog, ALS Prolog, LPA Prolog, and a number of other commercial implementa-
tions, as well as freeware Prologs from ESL and SWI. (We do not cover Turbo [PDC]
Prolog, nor Colmerauer’s Prolog Il and III, which are distinctly different languages.)

An earlier version of this book was published by Scott, Foresman in 1987. Since
then, we have used the book in our own courses every year, and the present version
reflects numerous refinements based on actual classroom experience. We want to
thank all our students and colleagues who made suggestions, especially Don Potter,
Harold Dale, Judy Guinan, Stephen McSweeney, Xun Shao, Joerg Zeppen, Joerg
Grau, Jason Prickett, Ron Rouhani, Ningyu Chen, Feng Chen, Jon Hamlin, and Mario
Nakazawa. We thank Melody Covington for her diligent work with the typesetting.

ix

Part]

The Prolog Language

Chapter 1

Introducing Prolog

1.1. THE IDEA OF PROLOG

Until recently, programming a computer meant giving it a list of things to do, step
by step, in order to solve a problem. In Prolog, this is no longer the case. A Prolog
program can consist of a set of facts together with a set of conditions that the solution
must satisfy; the computer can figure out for itself how to deduce the solution from
the facts given.

This is called LOGIC PROGRAMMING. Prolog is based on formal logic in the same
way that FORTRAN, BASIC, and similar languages are based on arithmetic and
simple algebra. Prolog solves problems by applying techniques originally developed
to prove theorems in logic.

Prolog is a very versatile language. We want to emphasize throughout this
book that Prolog can implement all kinds of algorithms, not just those for which it was
specially designed. Using Prolog does not tie you to any specific algorithm, flow of
control, or file format. That is, Prolog is no less powerful than Pascal, C, or C++;
In many respects it is more powerful. Whether Prolog is the best language for your
purposes will depend on the kind of job you want it to do, and we will do our best
to equip you to judge for yourself.

Prolog was invented by Alain Colmerauer and his colleagues at the University
of Aix-Marseille, in Marseilles, France, in 1972. The name stands for programming
in logic. Today Prolog is used mainly for artificial intelligence applications, espe-
cially automated reasoning systems. Prolog was the language chosen for the Fifth
Generation Project, the billion-dollar program initiated by the Japanese government

1

2 Introducing Prolog Chap. 1

in 1982 to create a new generation of knowledge-based computers. Commercially,
Prolog is often used in expert systems, automated helpdesks, intelligent databases,
and natural language processing programs.

Prolog has much in common with Lisp, the language traditionally used for
artificial intelligence research. Both languages make it easy to perform complex
computations on complex data, and both have the power to express algorithms ele-
gantly. Both Lisp and Prolog allocate memory dynamically, so that the programmer
does not have to declare the size of data structures before creating them. Both lan-
guages allow the program to examine and modify itself; thus, a program can “learn”
from information obtained at run time.

The main difference is that Prolog has an automated reasoning procedure —
an INFERENCE ENGINE — built into it, while Lisp does not. As a result, programs that
perform logical reasoning are much easier to write in Prolog than in Lisp. If the built-
in inference engine is not suitable for a particular problem, the Prolog programmer
can usually use part of the built-in mechanism while rewriting the rest. In Lisp, on
the other hand, if an inference engine is needed, the programmer must supply it.

Is Prolog “object-oriented”? Not exactly. Prolog is a different, newer, and more
versatile solution to the problem that object orientation was designed to solve. It is
quite possible to organize a Prolog program in an object-oriented way, but in Prolog,
that’s not the only option available to you. Prolog lets you talk about properties and
relations directly, rather than approaching them indirectly through an inheritance
mechanism.

1.2. HOW PROLOG WORKS

Prolog derives its power from a PROCEDURAL INTERPRETATION OF LOGIC — that is, it
represents knowledge in terms of procedure definitions, and reasoning becomes a
simple process of calling the right procedures. To see how this works, consider the
following two pieces of information:

[1] Forany X, if X is in Georgia, then X is in the United States.
[2] Atlanta is in Georgia.

We will call a collection of information such as this a KNOWLEDGE BASE. We will call
item [1] a RULE because it enables us to infer one piece of information from another,
and we will call item [2] a FACT because it does not depend on any other information.
Note that a rule contains an “if” and a fact does not. Facts and rules are the two
types of CLAUSES.

A fact need notbe a true statement about the real world; if you said Minneapolis
was in Florida, Prolog would believe you. Facts are sometimes called GROUND
CLAUSES because they are the basis from which other information is inferred.

Suppose we want to know whether Atlanta is in the United States. Clearly, [1]
and [2] can be chained together to answer this question, but how should this chaining
be implemented on a computer? The key is to express [1] and [2] as definitions of
procedures:

Sec. 1.2. How Proloeg Works 3

[1'] To prove that X is in the United States, prove that X is in Georgia.
[2'] To prove that Atlanta is in Georgia, do nothing.

We ask our question by issuing the instruction:
Prove that Atlanta is in the United States.

This calls procedure [1'], which in turn calls procedure [2'], which returns the answer

Prolog has its own notation for representing knowledge. Our sample knowl-
edge base can be represented in Prolog as follows:

in_united_states(X) :- in_georgia(X).
in_georgia(atlanta).

Here in_georgia and in_united_states are PREDICATES — that is, they say things
about individuals. A predicate can take any fixed number of ARGUMENTS (parame-
ters); for example,

female (sharon).
might mean “Sharon is female,” and
mother (melody, sharon).

might mean “Melody is the mother of Sharon.” A predicate that takes N arguments
(for any number N) is called an N-PLACE PREDICATE; thus we say that in_georgia,
in_united_states, and female are ONE-PLACE PREDICATES, while mother is a TWO-
PLACE PREDICATE. A one-place predicate describes a PROPERTY of one individual; a
two-place predicate describes a RELATION between two individuals.

The number of arguments that a predicate takes is called its ARITY (from terms
like unary, binary, ternary, and the like). Two distinct predicates can have the same
name if they have different arities; thus you might have both mother (melody),
meaning Melody is a mother, and mother (melody, sharon), meaning Melody is the
mother of Sharon. We will avoid this practice because it can lead to confusion.

In some contexts a predicate is identified by giving its name, a slash, and
its arity; thus we can refer to the two predicates just mentioned as mother/1 and
mother/2.

Exercise 1.2.1
Give an example, in Prolog, of a fact, a rule, a clause, a one-place predicate, and a
predicate of arity 2.

Exercise 1.2.2
In the previous example, we represented “in Georgia” as a property of Atlanta. Write a
Prolog fact that represents “in” as a relation between Atlanta and Georgia.

Exercise 1.2.3

How would you represent, in Prolog, the fact “Atlanta is at latitude 34 north and
longitude 84 west”? (Hint: More than one approach is possible. Second hint: It is OK
to use numbers as constants in Prolog.)

4 Introducing Prolog Chap. 1

1.3. VARIETIES OF PROLOG

1.4.

An important goal of this book is to teach you how to write portable Prolog code.
Accordingly, we will stick to features of the language that are the same in practically
all implementations. The programs in this book were developed in Arity Prolog and
ALS Prolog on IBM PCs and Quintus Prolog on Sun workstations. Most of them
have also been tested in SWI Prolog, LPA Prolog, Cogent (Amzi) Prolog, and Expert
Systems Limited’s Public Domain Prolog-2.!

For many years, the de facto standard for Prolog was the language described by
Clocksin and Mellish in their popular textbook, Programming in Prolog (1981, second
edition 1984). This is essentially the language implemented on the DEC-10 by D.
H. D. Warren and his colleagues in the late 1970s, and is often called “Edinburgh
Prolog” or “DEC-10 Prolog.” Most commercial implementations of Prolog aim to be
compatible with it.

In 1995 the International Organization for Standardization (ISO) published an
international standard for the Prolog language (Scowen 1995). ISO Prolog is very
similar to Edinburgh Prolog but extends it in some ways. Our aim in this book is to
be as compatible with the ISO standard as possible, but without using features of ISO
Prolog that are not yet widely implemented. See Appendix A for more information
about ISO Prolog.

Finally, we must warn you that this book is not about Turbo Prolog (PDC
Prolog), nor about Colmerauer’s Prolog II and Prolog IIIl. Turbo Prolog is Prolog
with data type declarations added. As a result, programs run faster but are largely
unable to examine and modify themselves. Colmerauer’s Prolog II and III are
CONSTRAINT LOGIC PROGRAMMING languages, which means they let you put limits
on the value of a variable before actually giving it a value; this makes many new
techniques available. The concepts in this book are certainly relevant to Turbo (PDC)
Prolog and Prolog II and III, but the details of the languages are different.

Exercise 1.3.1
If you have not done so already, familiarize yourself with the manuals for the version
of Prolog that you will be using.

Exercise 1.3.2

In the Prolog that you are using, does the query ‘?- help.’ do anything useful? Try it
and see.

A PRACTICAL KNOWLEDGE BASE

Figure 1.1 shows a Prolog knowledge base that describes the locations of certain
North American cities. It defines a single relation, called located_in, which relates
a city to a larger geographical unit. The knowledge base consists of facts such as

'Users of ESL Public Domain Prolog-2 must select Edinburgh-compatible syntax by adding the
line “:- state(token class, ,dec10).’ at the beginning of every program. Note that ESL Prolog-2 has
nothing to do with Colmerauer’s Prolog II.

Sec. 1.4. A Practical Knowledge Base 5

% File GEO.PL
% Sample geographical knowledge base

/* Clause 1 */ located_in(atlanta,georgia).

/* Clause 2 */ located_in(houston,texas).

/* Clause 3 */ located_in(austin,texas).

/* Clause 4 */ located_in(toronto,ontario).

/* Clause § */ located_in(X,usa) :- located_in(X,gecrgia).

/* Clause 6 */ located_in(X,usa) :- located_in(X,texas).

/* Clause 7 */ located_in(X,canada) :- located_in(X,ontario).

/* Clause 8 */ located_in(X,north_america) :- located_in(X,usa).
9

/* Clause 9 */ located_in(X,north_america) :- located_in(X,canada).

Figure 1.1 A simple Prolog knowledge base.

“Atlanta is located in Georgia,” “Houston is located in Texas,” and the like, plus
rules such as “X is located in the United States if X is located in Georgia.”

Notice that names of individuals, as well as the predicate located_in, always
begin with lowercase letters. Names that begin with capital letters are variables and
can be given any value needed to carry out the computation. This knowledge base
contains only one variable, called X. Any name can contain the underscore character
(L.

Notice also that there are two ways to delimit comments. Anything bracketed
by /* and */ is a comment; so is anything between % and the end of the line, like
this:

/* This is a comment */
% So is this

Comments are ignored by the computer; we use them to add explanatory information
and (in this case) to-number the clauses so we can talk about them conveniently.

It is not clear whether to call this knowledge base a program; it contains nothing
that will actually cause computation to start. Instead, the user loads the knowledge
base into the computer and then starts computation by typing a QUERY, which is a
question that you want the computer to answer. A query is also called a GOAL. It
looks like a Prolog clause except that it is preceded by ‘?-" — although in most cases
the Prolog implementation supplies the “?-” and you need only type the goal itself.

Unfortunately, we cannot tell you how to use Prolog on your computer because
there is considerable variation from one implementation to another. In general,
though, the procedure is as follows. First use a text editor to create a file of clauses
such as GEO.PL in Figure 1. Then get into the Prolog interpreter and type the special

query:
?7- conmsult(’geo.pl?).

(Remember the period at the end — if you don't type it, Prolog will assume your
query continues onto the next line.) Prolog replies

6 Infroducing Prolog Chap. 1

yes

to indicate that it succeeded in loading the knowledge base.

Two important notes: First, if you want to load the same program again
after escaping to an editor, use reconsult instead of consult. That way you
won't get two copies of it in memory at the same time. Second, if you're using
a PC, note that backslashes (\) in the file name may have to be written twice (e.g.,
consult (’c:\\myprog.pl’) to load C:\MYPROG.PL). This is required in the ISO
standard but not in most of the MS-DOS Prologs that we have worked with.

As soon as consult has done its work, you can type your queries. Eventually,
you'll be through using Prolog, and you can exit from the Prolog system by typing
the special query

7- halt.
Most queries, however, retrieve information from the knowledge base. You can type
?- located_in(atlanta,georgia).

to ask whether Atlanta is in Georgia. Of course it is; this query matches Clause 1
exactly, so Prolog again replies “yes.” Similarly, the query

?- located_in(atlanta,usa).

can be answered (or, in Prolog jargon, SOLVED or SATISFIED) by calling Clause 5 and
then Clause 1, so it, too, gets a “yes.” On the other hand, the query

7~ located_in(atlanta,texas).

gets a “no” because the knowledge base contains no information from which the
existence of an Atlanta in Texas can be deduced.
We say that a query SUCCEEDS if it gets a “yes” answer, or FAILS if it gets a “no”

answer.
Besides answering yes or no to specific queries, Prolog can fill in the blanks in

a query that contains variables. For example, the query
7- located_in(X,texas).

means “Give me a value of X such that in(X,texas) succeeds.”

Here we run into another unique feature of Prolog — a single query can have
multiple solutions. Both Houston and Austin are in Texas. What happens in this
case is that Prolog finds one solution and then asks you whether to look for another.
This continues until all alternatives are found or you stop asking for them. In some
Prologs, the process looks like this:

?- located_in(X,tezas).
X = houston

More (y/n)? y

X = austin

More (y/n)? y

no

Sec. 1.4. A Practical Knowledge Base 7

The “no” at the end means there are no more solutions.

In Arity Prolog, the notation is more concise. After each solution, the computer
displays an arrow (->). You respond by typing a semicolon (meaning look for more
alternatives) or by hitting Return (meaning quit), like this:

?- located_in(X,texas).
X = houston -> ;

X = austin -> ;

no

In Quintus Prolog and many others, there isn’t even an arrow; the computer just
pauses and waits for you to type a semicolon and then hit Return, or else hit Return
by itself:

?- located_in(X,texas).
X = houston ;

X = austin ;

no

Also, you’ll find it hard to predict whether the computer pauses after the last solution; |
it depends partly on the way the user interface is written, and partly on exactly what
you have queried. From here on, we will present interactions like these by printing
only the solutions themselves and leaving out whatever the user had to type to get
the alternatives.

Sometimes your Prolog system may not let you ask for alternatives (by typing
semicolons, or whatever) even though alternative solutions do exist. There are two
possible reasons. First, if your query has performed any output of its own, the Prolog
system will assume that you've already printed out whatever you wanted to see, and
thus that you're not going to want to search for alternatives interactively. So, for
example, the query

?- located_in(X,texas), write(X).

displays only one answer even though, logically, there are alternatives. Second, if
your query contains no variables, Prolog will only print “yes” once no matter how
many ways of satisfying the query there actually are.

Regardless of how your Prolog system acts, here’s a sure-fire way to get a list
of all the cities in Texas that the knowledge base knows about:

?- located_in(X,texas), write(X), nl, fail.

The special predicate write causes each value of X to be written out; nl starts a new
line after each value is written; and fail forces the computer to backtrack to find all
solutions. We will explain how this works in Chapter 2. For now, take it on faith.

We say that the predicate located_in is NONDETERMINISTIC because the same
question can yield more than one answer. The term “nondeterministic” does not
mean that computers are unpredictable or that they have free will, but only that they
can produce more than one solution to a single problem.

Another important characteristic of Prolog is that any of the arguments of
a predicate can be queried. Prolog can either compute the state from the city or
compute the city from the state. Thus, the query

8 Introducing Prolog Chap. 1

?- located_in(austin,X).
retrieves the names of regions that contain Austin, and
7- located_in(X,texas).

retrieves the names of cities that are in Texas. We will call this feature REVERSIBILITY
or INTERCHANGEABILITY OF UNKNOWNS. In many — but not all — situations, Prolog
can fill in any argument of a predicate by searching the knowledge base. In Chapter
3 we will encounter some cases where this is not so.

We can even query all the arguments of a predicate at once. The query

?- located_in(X,Y).

means “What is in what?” and each answer contains values for both X and Y (Atlanta
is in Georgia, Houston is in Texas, Austin is in Texas, Toronto is in Ontario, Atlanta is
in the U.S.A., Houston is in the U.S.A., Austin is in the U.S.A., Toronto is in Canada,
and so forth). On the other hand,

?7- located_in(X,X).

means “What is in itself?” and fails — both occurrences of X have to have the same
value, and there is no value of X that can successfully occur in both positions at the
same time. If we were to add New York to the knowledge base, this query could
succeed because the city has the same name as the state containing it.

Exercise 1.4.1

Load GEQ.PL into your Prolog system and try it out. How does your Prolog system
respond to each of the following queries? Give all responses if there is more than one.

?- located_in(austin,texas).

7~ located_in(austin,georgia).

?- located_in(What,texas).

?7- located_in(atlanta,What).
Exercise 1.4.2

Add your home town and state (or region) and country to GEO.PL and demonstrate
that the modified version works correctly.

Exercise 1.4.3
How does GEO.PL respond to the query ‘?- located_in(texas,usa).”? Why?

Exercise 1.4.4 (for PC users only)

Does your Prolog require backslashes in file names to be written double? That is, to load
CAMYDIR\MYPROG.PL, do you have to type consult(’c:\\mydir\\myprog.pl’)?
Try it and see.

Sec. 1.5. Unification and Variable Instantiation g

1.5. UNIFICATION AND VARIABLE INSTANTIATION

The first step in solving any query is to match — or UNIFY — the query with a fact
or with the left-hand side (the HEAD) of a rule. Unification can assign a value to a
variable in order to achieve a match; we refer to this as INSTANTIATING the variable.
For example, the query

?- located_in(austin,north_america).

unifies with the head of Clause 8 by instantiating X as austin. The right-hand side
of Clause 8 then becomes the new goal. Thus:

Goal: 7~ located_in(austin,north_america).

Clause 8: located_in(X,north_america) :- located_in(X,usa).
Instantiation: X = austin

New goal: ?- located_in(austin,usa).

We can then unify the new query with Clause 6:

Goal: ?- located_in(austin,usa).

Clause 6: located_in(X,usa) :- located_in(X,texas).
Instantiation: X = austin

New query: ?- located_in(austin,texas).

This query matches Clause 3. Since Clause 3 does not contain an “if,” no new query
is generated and the process terminates successfully. If, at some point, we had had
a query that would not unify with any clause, the process would terminate with
failure.

Notice that we have to instantiate X two times, once when we call Clause 8
and once again when we call Clause 6. Although called by the same name, the X in
Clause 8 is not the same as the X in Clause 6. There is a general principle at work
here:

Like-named variables are not the same variable unless they occur in the same
clause or the same query.

In fact, if we were to use Clause 8 twice, the value given to X the first time would
not affect the value of X the second time. Each instantiation applies only to one
clause and only to one invocation of that clause. However, it does apply to all of the
occurrences of that variable in that clause; when we instantiate X, all the X’s in the
clause take on the same value at once.

If you‘ve never used a language other than Prolog, you're probably thinking
that this is obvious, and wondering why we made such a point of it; Prolog couldn’t
possibly work any other way. If you're accustomed to a conventional language, we
want to make sure that you don’t think of instantiation as storing a value in a variable.
Instantiation is more like passing a parameter. Suppose you have a Pascal procedure
such as this:

procedure p{x:integer}; { This is Pascal, not Prolog! }
begin

writeln(’The answer is ’,x)
end;

10 introducing Prolog Chap. 1

If you call this with the statement

p(3)

you are passing 3 to procedure p as a parameter. The variable x in the procedure is
instantiated as 3 but only for the duration of this invocation of p. It would not be
correct to think of the value 3 as being “stored” in a location called x; as soon as the
procedure terminates, it is gone.

One uninstantiated variable can even be unified with another. When this hap-
pens, the two variables are said to SHARE, which means that they become alternative
names for a single variable, and if one of them is subsequently given a value, the
other one will have the same value at the same time. This situation is relatively
uncommon, but there are programs in which it plays a crucial role. We will discuss
unification and instantiation at greater length in Chapter 3.

Exercise 1.5.1

What would happen to GEO.PL if Clauses 5 and 6 were changed to the following?

located_in(Y,usa) :- located_in(Y,georgia).
located_in(Z,usa) :~ located_in(Z,texas).

Exercise 1.5.2
Disregarding the wisdom of this section, a beginning Prolog student loads GEO.PL and
has the following dialogue with the computer:
?- located_in(austin,X).
X = texas
7- write(X).
X is uninstantiated
Why didn’t the computer print ‘texas’ the second time? Try this on your computer.
What does your computer print when you try to write out an uninstantiated variable?

1.6. BACKTRACKING

If several rules can unify with a query, how does Prolog know which one to use?
After all, if we unify

?- located_in(austin,usa).

with Clause 5, we generate

?~ located_in(austin,georgia).

which fails. However, if we use Clause 6, we generate
?- located_in(austin,texas).

which succeeds. From the viewpoint of our query, Clause 5 is a blind alley that does

not lead to a solution.
The answer is that Prolog does not know in advance which clause will succeed,
butitdoes know how toback out of blind alleys. This process s called BACKTRACKING.

Sec. 1.6. Backiracking 11

Prolog tries the rules in the order in which they are given in the knowledge base.
If a rule does not lead to success, it backs up and tries another. Thus, the query
‘?- located_in(austin,usa).’ will first try to unify with Clause 5 and then, when
that fails, the computer will back up and try Clause 6.

A good way to conceive of backtracking is to arrange all possible paths of
computation into a tree. Consider the query:

?- located_in(toronto,north_america).

Figure 1.2 shows, in tree form, all the paths that the computation might follow. We
can prove that Toronto is in North America if we can prove that it is in either the
U.S.A. or Canada. If we try the U.S5.A., we have to try several states; fortunately, we
only know about one Canadian province. Almost all of the paths are blind alleys,
and only the rightmost one leads to a successful solution.

Figure 1.3 is the same diagram with arrows added to show the order in which
the possibilities are tried. Whenever the computer finds that it has gone down a
blind alley, it backs up to the most recent query for which there are still untried
alternatives, and tries another path. Remember this principle:

Backtracking always goes back to the most recent untried alternative.

When a successful answer is found, the process stops, unless, of course, the user
asks for alternatives, in which case the computer continues backtracking to look for
another successful path.

This strategy of searching a tree is called DEPTH-FIRST SEARCH because it involves
going as far along each path as possible before backing up and trying another path.
Depth-first search is a powerful algorithm for solving almost any problem that
involves trying alternative combinations. Programs based on depth-first search are
easy to write in Prolog.

Note that, if we use only the features of Prolog discussed so far, any Prolog
query gives the same answers regardless of the order in which the rules and facts are
stated in the knowledge base. Rearranging the knowledge base affects the order in
which alternative solutions are found, as well as the number of blind alleys that must
be tried before finding a successful solution, but it does not affect the actual answers
given. This is one of the most striking differences between Prolog and conventional
programming languages.

Exercise 1.6.1
Make a diagram like Figure 1.3 showing how GEO.PL handles the query
‘?- located_in(austin,north_america).’

Exercise 1.6.2

With GEO.PL, which is faster to compute,

‘?- located_in(atlanta,usa).’ or ‘?- located_in(austin,usa)}.’? Why?
Exercise 1.6.3

Without using the computer, predict the order in which the Prolog system will find
the various solutions to the query ‘7~ located_in(X,usa).” Then use the computer to
verify your prediction.

12 Introducing Prolog Chap. 1

?- located_in{toronto,north_america).

Clause 8 Clause 9
?- located_in(toronto,usa). ?- located_in(toronto,canada).
Clause 5 Clause 6 Clause 7
?- located_in(toronto,georgia). ?- located_in(toronto,texas). ?- located_in(toronto,ontario).
No match. No match. Clause 4
Back up. Back up.

Exact maich.
Success!

Figure 1.2 The solution to the query lies somewhere along one of these paths.

Sec. 1.6. Backtracking

13

?- located_in(toronto,north_america).

—

Clause 8

v

?- located_in(toronto,usa).

/

Clause 5

v

?- located_in{toronto,georgia).

l

No match.
Back up.

?- located_in(toronto,texas).

Clause 6

A

l

No match.

Back U

Figure 1.3 The computer searches the paths in this order.

Clause 9

v

?- located_in(toronto,canada).

Clause 7

v

?- located_in(toronto,ontario).

Clause 4

l

Exact match.
Success!

14 Introducing Prolog Chap. 1

1.7. PROLOG SYNTAX

The fundamental units of Prolog syntax are atoms, numbers, structures, and vari-
ables. We will discuss numbers and structures further in Chapter 3. Atoms, numbers,
structures, and variables together are known as TERMS.

Atoms are used as names of individuals and predicates. An atom normally
begins with a lowercase letter and can contain letters, digits, and the underscore
mark (_). The following are examples of atoms:

X

georgia

ax123aBCD

abcd_x_and_y_a_long_example

If an atom is enclosed in single quotes, it can contain any characters whatsoever,
but there are two points to note. First, a quote occurring within single quotes is
normally written double. Second, in some implementations, a backslash within an

atom has special significance; for details see Appendix A and your manual. Thus,
the following are also atoms:

’Florida’

’a very long atom with blanks in it’
112812¢°

y g

’don’’t worry’

Yback\\slashes’

In fact, >32° is an atom, not equal to the number 32. Even *’ is an atom (the empty
atom), although it is rarely used.

Atoms composed entirely of certain special characters do not have to be written
between quotes; for example, ‘-->" (without quotes) is a legitimate atom. (We will
explore this feature further in Chapter 6.) There is usually no limit on the length of
an atom, with or without quotes, but check the manual for your implementation to

be sure.
A structure normally consists of an atom, an opening parenthesis, one or more

arguments separated by commas, and a closing parenthesis. Fowever, an atom by
itself is, strictly speaking, a structure with no arguments. All of the following are
structures:

a(b,c,d)
located_in(atlanta,texas)
located_in(X,georgia)
mother_of (cathy,melody)

’a Weird!?! Atom’ (xxx,yyy,zzz)

i_have_no_arguments

Sec. 1.7. Prolog Syntax 15

The atom at the beginning is called the FUNCTOR of the structure. (If some of the
arguments are also structures, then the functor at the beginning of the whole thing is
called the PRINCIPAL FUNCTOR.) So far we have used structures only in queries, facts,
and rules. In all of these, the functor signified the name of a predicate. Functors
have other uses that we will meet in Chapter 3.

Actually, even a complete rule is a structure; the rule

a(X) :- b(X).

could equally well be written
=(a(X),b(X)).

or possibly, in some implementations,
=7 (a(X) ,b(X)).

The functor ‘: -’ is called an INFIX OPERATOR because it is normally written between
its arguments rather than in front of them. In Chapter 6 we will see how to create
other functors with this special feature.

Variables begin with capital letters or the underscore mark, like these:

4 Result Which _Ever
_howdy _12345 Xx
A variable name can contain letters, digits, and underscores.
Prolog knowledge bases are written in free format. That is, you are free to insert
spaces or begin a new line at any point, with two restrictions: You cannot break up

an atom or a variable name, and you cannot put anything between a functor and the
opening parenthesis that introduces its arguments. That is, in place of

leocated_in(atlanta,georgia).
you are welcome to write

located_in(atlanta,
georgia).

but not
located_in (at lanta,georgia). % two syntax errors!

Most implementations of Prolog require all the clauses for a particular predicate
to be grouped together in the file from which the clauses are loaded. That is, you can

say

mother (melody, cathy) .
mother(eleanor ,melody) .
father (michael, cathy).
father(jim,melody) .

but not

16 introducing Prolog Chap. 1

mother (melody, cathy) . % wrong!
father (michael, cathy) .

mother (eleanor,melody) .

father (jim,melody).

The results of violating this rule are up to the implementor. Many Prologs do
not object at all. Quintus Prolog gives warning messages, but loads all the clauses
properly. A few Prologs ignore some of the clauses with no warning. See Appendices
A and B for more information about discontiguous sets of clauses.

Exercise 1.7.1

Identify each of these as an atom, number, structure, variable, or not a legal term:
asdfasdf 234 f(a,b) .on
i(y,2z) in_out_ X (XX) 'X?

Exercise 1.7.2
What are the two syntax errors in the following?

located_in (at lanta,georgia).

Exercise 1.7.3

What does your Prolog system do if the clauses for a predicate are not grouped together?
Does it give an error or warning message? Does it ignore any of the clauses? Experiment
and see.

1.8. DEFINING RELATIONS

The file FAMILY.PL (Figure 1.4) contains some information about the family of one of
the authors. It states facts in terms of the relations mother and father, each of which
links two individuals. In each pair, we have decided to list the parent first and the
son or daughter second.

FAMILY.PL can answer queries such as “Who is Cathy’s mother?” —

?- mother(X, cathy).
X = melody

or “Who is Hazel the mother of?” —

?- mother(hazel,4).

A = michael

4 = julie

More importantly, we can define other relations in terms of the ones already defined.

For exampile, let’s define “parent.” A parent of X is the father or mother of X. Since
there are two ways to be a parent, two rules are needed:

parent (X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Sec. 1.8. Defining Relations

% File FAMILY.PL
% Part of a family tree expressed in Prolog

% In father/2, mother/2, and parent/2,

% first arg. is parent and second arg. is child.

father (michael,cathy).

father (michael,sharon).

father (charles_gordon,michael).
father (charles_gordon,julie).
father(charles,charles_gordon).
father(jim,melody).

father (jim,crystal).

father (elmo, jim) .
father(greg,stephanie).

father (greg,danielle).

mother (melody,cathy).
mother (meledy, sharon).
mother (hazel,michael).
mother (hazel, julie).
mother (eleanor,melody).
mother (eleanor,crystal).
mother (crystal,stephanie).
mother (crystal,danielle).

parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

Figure 1.4 Part of a family tree in Prolog.

17

18 Introducing Prolog Chap. 1

These two rules are alternatives. The computer will try one of them and then, if it
doesn’t work or if alternative solutions are requested, back up and try the other. If
we ask

7- parent(X,michael).

we get X=charles_gordon, using the first definition of “parent,” and then X=hazel,
using the second definition.

Exercise 1.8.1

Make a diagram like Figure 1.3 showing how Prolog answers the query
?- parent(X,danielle).

using FAMILY.PL as the knowledge base.

Exercise 1.8.2

Make a modified copy of FAMILY.PL using information about your own family. Make
sure that queries to mother, father, and parent are answered correctly.

1.9. CONJOINED GOALS (“AND")

We can even ask Prolog to satisfy two goals at once. Suppose we want to know the
name of Michael’s paternal grandfather. That is, we want to find out who Michael’s
father is, and then find out the name of that person’s father. We can express this as:

7- father(F,michael), father(G,F).
F = charles_gordon G = charles

In English: “Find F and G such that F is the father of Michael and G is the father of
F.” The computer’s task is to find a single set of variable instantiations that satisfies
both parts of this compound goal. It first solves fathex (F,michael), instantiating F
to charles_gordon, and then solves father(G,charles_gordon), instantiating G to
charles. This is consistent with what we said earlier about variable instantiations
because F and G occur in the same invocation of the same clause.

We will get exactly the same answer if we state the subgoals in the opposite
order:

7~ father(G,F), father(F,michael).
F = charles_gordon G = charles

In fact, this is intuitively easier to follow because G, F, and michael are mentioned in
chronological order. However, it slows down the computation. In the first subgoal,
G and F are both uninstantiated, so the computer can instantiate them by using any
clause that says someone is someone’s father. On the first try, it uses the very first
clause in the knowledge base, which instantiates G to michael and F to cathy. Then
it gets to the second subgoal and discovers that Cathy is not Michael’s father, so it
has to back up. Eventually, it gets to father(charles_gordon,charies) and can
proceed.

Sec. 1.10. Disjoint Goals (“Or") 19

The way we originally stated the query, there was much less backtracking be-
cause the computer had to find the father of Michael before proceeding to the second
subgoal. It pays to think about the search order as well as the logical correctness of
Prolog expressions. We will return to this point in Chapter 4.

We can use compound goals in rules, as in the following definition of “grand-
father”:

grandfather(G,C) :- father(F,C), father(G,F).
grandfather(G,C) :- mother(M,C), father(G,M).

The comma is pronounced “and” — in fact, there have been Prolog implementations
that write it as an ampersand (&).

Exercise 1.9.1

Add the predicates grandfather, grandmother, and grandparent to FAMILY.PL. (Hint:
You will find parent useful.) Verify that your new predicates work correctly.

1.10. DISJOINT GOALS (“OR")

Prolog also provides a semicolon, meaning “or,” but we do not recommend that you
use it very much. The definition of parent in FAMILY.PL could be written as a single
rule:

parent(X,Y) :- father(X,Y); mother(X,Y).

However, the normal way to express an “or” relation in Prolog is to state two rules,
not one rule with a semicolon in it. The semicolon adds little or no expressive
power to the language, and it looks so much like the comma that it often leads to
typographical errors. In some Prologs you can use a vertical bar, ‘|’, in place of a
semicolon; this reduces the risk of misreading.

If you do use semicolons, we advocate that you use parentheses and/or dis-
tinctive indentation to make it crystal clear that they are not commas. If there are no
parentheses to indicate otherwise, the semicolon has wider scope than the comma.
For example,

£(X) :- a(X), b(X); c(X), 4X).
is equivalent to
£(X) - (@@, bX)); (eX), d(X)).

and means, “To satisfy £(X), find an X that satisfies either a(X) and b(X), or else
¢(X) and d(X).” The parentheses make it easier to understand. O’Keefe (1990:101)
recommends that, instead, you should write:

£(X) - (a(X), bX
s e(X), aX
).

20 Introducing Prolog Chap. 1

to make the disjunction really prominent. In his style, the parentheses call attention
to the disjunction itself, and the scope of the ands and ors is represented by rows and
columns. But as a rule of thumb, we recommend that instead of mixing semicolons
and commas together in a single predicate definition, you should usually break up
the complex predicate into simpler ones.

Exercise 1.10.1

Go back to GEO.PL and add the predicate eastern/1, defined as follows: A place is
eastern if it is in Georgia or in Ontario. Implement this predicate two different ways:
first with a semicolon, and then without using the semicolon.

Exercise 1.10.2

Define a predicate equivalent to
£(X) - (@@, b(X)); (e(@), a(X)).
but without using semicolons. Use as many clauses as necessary.

1.11. NEGATIVE GOALS (“NOT")

The special predicate \+ is pronounced “not” or “cannot-prove” and takes any goal
as its argument. (In earlier Prologs, \+ was written not; \+ is a typewritten represen-
tation of f/, which means “not provable” in formal logic.)

Ifgisany goal, then \+ gsucceedsif g fails, and fails if g succeeds. For instance:

7~ father(michael,cathy).
yes

?- \+ father(michael,cathy).
no

?- father(michael,melody).
no

?- \+ father(michael,melody).

!

yes

Notice that \+ does not require parentheses around its argument.

The behavior of \+ is called NEGATION AS FAILURE. In Prolog, you cannot
state a negative fact (“Cathy is not Michael’s father”); all you can do is conclude
a negative statement if you cannot conclude the corresponding positive statement.
More precisely, the computer cannot know that Cathy is not Michael’s father; all it
can know is that it has no proof that she is his father.

Rules can contain \+. For instance, “non-parent” can be defined as follows:

non_parent(X,Y) :- \+ father(X,Y), \+ mother(X,Y).

That is, X is a non-parent of Y if X is not the father of Y and X is also not the mother of
1.

In FAMILY.PL, the “non-parents” of Cathy are everyone except Michael and
Melody. Sure enough;, the following queries succeed:

Sec. 1.11. Negative Goals (“Not”) 21

7- non_parent (elmo, cathy) .
yes

7- non_parent (sharon,cathy).
yes

?- non_parent(charles,cathy).
yes

and non_parent fails if its arguments are in fact a parent and his or her child;

?- non_parent (michael,cathy).
no

7- non_parent (melody,cathy).
no

So far, so good, but what happens if you ask about people who are not in the
knowledge base at all?

7- non_parent (donald,achsa).
yes

Wrong! Actually, Donald (another of the authors of this book) is the father of
Achsa, but FAMILY.PL doesn’t know about it. Because the computer can’t prove
father (donald,achsa) nor mother(donald,achsa), the non_parent query suc-
ceeds, giving a result that is false in the real world.

Here we see a divergence between Prolog and intuitively correct thinking. The
Prolog system assumes that its knowledge base is complete (e.g., that there aren’t any
fathers or mothers in the world who aren’t listed). This is called the CLOSED-WORLD
ASSUMPTION. Under this assumption, \+ means about the same thing as “not,” but
without the closed-world assumption, \+ is merely a test of whether a query fails.
That's why many Prolog users refuse to call \+ “not,” pronouncing it “cannot-prove”
or “fail-if” instead.

Note also that a query preceded by \+ never returns a value for its variables.
You might think that the query

?- \+ father(X,¥Y).

would instantiate X and Y to two people, the first of which is not the father of
the second. Not so. To solve \+ father(X,Y), the computer attempts to solve
father(X,Y) and then fails if the latter goal succeeds or succeeds if the latter goal
fails. In turn, father(X,Y) succeeds by matching a clause in the knowledge base.
Therefore, \+ father(X,Y) has to fail, and because it fails, it does not report variable
instantiations.

As if this were not enough, the order of subgoals in a query containing \+ can
affect the outcome. Let’s add the fact

blue_eyed(cathy) .

to the knowledge base. Now look at the results of the following queries:

22 Introducing Prolog Chap. 1

7- blue_eyed(X) ,non_parent(X%,Y).

X = cathy

yes

?- pon_parent(X,Y),blue_eyed(X).
no

The first query succeeds because X gets instantiated to cathy beforenon_parent (X, Y)
is evaluated, and non_parent (cathy,Y) succeeds because there are no clauses that
list Cathy as a mother or father. But in the second query, X is uninstantiated when
non_parent (X,Y) isevaluated, and non_parernt (X,Y) fails as soon as it finds a clause
that matches father (X,Y).

To make negation apply to a compound goal, put the compound goal in paren-
theses, and be sure to leave a space after the negation symbol. Here’s a whimsical
example:?

blue_eyed_non_grandparent(X) :-
blue_eyed(X),
\+ (parent(X,Y), parent(Y,Z)).

That is, you're a blue-eyed non-grandparent if you are blue-eyed, and you are not
the parent of some person Y who is in turn the parent of some person Z.

Finally, note that \+ (with its usual Prolog meaning) can appear only in a query
or on the right-hand side of a rule. It cannot appear in a fact or in the head of a rule.
If you say

\+ father(cathy,michael). % wrong!

you are not denying that Cathy is Michael’s father; you are merely redefining the
built-in predicate \+, with no useful effect. Some Prolog implementations will allow
this, with possibly unpleasant results, while others will display an error message
saying that \+ is a built-in predicate and you cannot add clauses to it.

Exercise 1.11.1
Define non_grandparent (X,Y), which should succeed if X is not a grandparent of ¥.

Exercise 1.11.2

Define young_parent (X), which should succeed if X has a child but does not have any
grandchildren. Make sure it works correctly; consider the case of someone who has two
children, one of whom, in turn, has a child of her own while the other one does not.

1.12. TESTING FOR EQUALITY

Now consider the problem of defining “sibling” (brother or sister). Two people are
siblings if they have the same mother. (They also have the same father, but this
is irrelevant because everyone has both a father and a mother — at least in this
knowledge base.) So a first approximation is:

2Some Prologs will print a warning message that the value of Z in this clause is never put to any
use. See “Anonymous Variables” (Sec. 1.13).

Sec. 1.12. Testing for Equality 23

sibling(X,Y) :- mother(M,X), mother(M,Y).

If we put this rule into FAMILY.PL and then ask for all the pairs of siblings known
to the computer, we get a surprise:

?- sibling(X,Y).

X = cathy Y = cathy

X = cathy Y = sharon

X = sharon Y = cathy

X = sharon Y = sharon (etc.)

Cathy is not Cathy’s sibling, yet Cathy definitely has the same mother as Cathy. We
need to rephrase the rule: “X is a sibling of Y if M is the mother of X, and M is the
mother of Y, and X is not the same as Y.”

To express “not the same” we need an equality test: if X and Y are instantiated
to the same value, then

X ==

succeeds and, of course,

\+ X ==

fails. The new rule is:

sibling(X,Y) :- mother(M,X), mother(M,Y), \+ X == Y.
With it, we get the desired result:

?7- sibling(X,Y).
X = cathy Y
X = sharon Y

sharon
cathy (etc.)

Ll

Wait a minute, you say. That’s the sarne answer twice! We reply: No, itisn’t. Remem-
ber that, as far as Prolog is concerned, the two conclusions sibling(cathy,sharon)
and sibling(sharon,cathy) are separate pieces of knowledge. Both of them are
true, so it’s entirely correct to get them both.

Here’s another example of equality testing. X is an only child if X’s mother
doesn’t have another child different from X. In Prolog:

only_child(X) :- mother(M,X), \+ (mother(M,Y), \+ X == Y).

Note how the negations are nested. Given X, the first step is to find X’s mother,
namely M. Then we test whether M has another child Y different from X.

There are actually two “equal” predicates in Prolog. The predicate ‘==’ tests
whether its arguments already have the same value. The other equality predicate, ‘=’,
attempts to unify its arguments with each other, and succeeds if it can do so. Thus,
you can use it not only to test equality, but also to give a variable a value: X = a will
unify X with a. With both arguments instantiated, ‘=" and ‘==" behave exactly alike.

It's a waste of time to use an equality test if you can do the same job by simply
putting a value in an argument position. Suppose, for instance, you want to define
a predicate parent_of_cathy(X) that succeeds if X is a parent of Cathy. Here is one
way to express it:

24 Introducing Prolog Chap. 1

parent_of_cathy(X) :- parent(X,Y), Y = cathy. % poor style

That is: first find a person Y such that X is a parent of ¥, then check whether ¥ is
Cathy. This involves an unnecessary step, since we can get the same answer in a
single step with the rule:

parent_of_cathy(X) :- parent(X,cathy). % better style

However, ‘=" and "==' are often necessary in programs that perform input from the
keyboard or a file during the computation. We can have goals such as:

?- read(X), write(X), X = cathy.

This means: Instantiate X to a value read in from the keyboard, then write X on the
screen, then test whether X equals cathy. Itis necessary to use ‘=" or ‘==" here because
we cannot predict what value X will have, and we don’t want the computation to fail
before printing X out. We will deal with input and output in Chapter 2.

Exercise 1.12.1
Does FAMILY.PL list anyone who satisfies only.child as defined in this section? Explain
why or why not.

Exercise 1.12.2

Can a query such as ‘7~ only_child(X) .’ retrieve a value for X? Explain why or why
not. If necessary, add an instance of an only child to the knowledge base in order to test
this.

Exercise 1.12.3

From the information in FAMILY.PL, can you tell for certain who is married to whom?
Explain why or why not.

Exercise 1.12.4

Add to FAMILY.PL the definitions of brother, sister, uncle, and aunt. Verify that your
predicate definitions work correctly. (Hint: Recall that you have two kinds of uncles:
the brothers of your parents, and the husbands of your aunts. You will need to add facts
to specify who is male, who is female, and who is married to whom.)

1.13. ANONYMOUS VARIABLES

Suppose we want to find out whether Hazel is a mother but we don’t care whose
mother she is. We can express the query this way:

?- mother (hazel,).

Here the underscore mark stands for an ANONYMOUS VARIABLE, a special variable that
matches anything, but never takes on a value. The values of anonymous variables
are not printed out in response to a query. More importantly, successive anonymous
variables in the same clause do not take on the same value; they behave as if they
were different variables.

Sec. 1.14. Avoiding Endless Computations 25

You should use an anonymous variable whenever a variable occurs only once
in a clause and its value is never put to any use. For example, the rule

is_a_grandmother(X) :- mother(X,Y), parent(Y,Z).
is exactly equivalent to
is_a_grandmother(X) :- mother(X,Y), parent(Y,_).

but is less work for the computer because no value need be assigned to the anony-
mous variable. Here X and Y cannot be replaced with anonymous variables because
each of them has to occur in two places with the same value.

Exercise 1.13.1

Modify blue_eyed_non_grandparent (p. 22) by putting an anonymous variable in the
appropriate place.

Exercise 1.13.2

Why isn’t the following a proper definition of grandparent?
grandparent (G,C) :- parent(G,_), parent(_,C). % wrong!

1.14. AVOIDING ENDLESS COMPUTATIONS

Some Prolog rules, although logically correct, cause the computation to go on end-
lessly. Suppose, for example, we have the following knowledge base:

married(michael,melody) . (1]
married(greg,crystal).
married(jim,eleanor).

and we want to express the fact that if X is married to Y, then Y is married to X. We
might try the rule:

married(X,Y) :- married(Y,X). [2]
Now suppose we type the query:
?7- married(don, jane).

Don and Jane are not in the knowledge base. Accordingly, this query does not match
any of the facts in [1], so rule [2] gets invoked and the new goal becomes:

?- married(jane,don).

Again, this does not match any of the facts in [1], so rule [2} is invoked and the new
goal becomes:

?- married(don, jane).

26 Introducing Prolog Chap. 1

Now we're back where we started. The loop continues until the computer runs out
of stack space or the user interrupts the computation.

One way to prevent the loop is to have two “married” predicates, one for facts
and one for rules. Given the facts in [1], we can define a predicate couple/2 which,
unlike married, will take its arguments in either order. The definition is as follows:

couple(X,¥) :- married(X,Y).
couple(Y,X) :- married(X,Y).

No loop can arise because no rule can call itself directly or indirectly; so now the
query ‘7~ couple(don, jane) .’ fails, as it should. (Only because they are not in the
knowledge base; we hasten to assure readers who know us personally that they are
married!)

Sometimes a rule has to be able to call itself in order to express repetition. To
keep the loop from being endless, we must ensure that, when the rule calls itself, it
does not simply duplicate the previous call.

For an example, let’s go back to FAMILY.PL and develop a definition for “an-
cestor.” One clause is easy, since parents are ancestors of their children:

ancestor (X,Y) :- parent(X,Y). [31

But the relation of ancestor to descendant can span an unlimited number of genera-
tions. We might try to express this with the clause:

ancestor(X,Y) :- ancestor(X,Z), ancestor(Z,Y). % wrong! [4]
But this causes a loop. Consider the query:
7- ancestor(cathy,Who).

Cathy isn’t an ancestor of anyone, and the query should fail. Instead, the computer
goes into an infinite loop. To solve the query, the computer first tries clause [3], which
fails because it can’t satisfy parent (cathy,Who). Then it tries clause [4], generating
the new goal:

?- ancestor(cathy,2), ancestor(Z,Who).

In order to solve ancestor(cathy,2) the computer will do exactly the same things
as for ancestor(cathy,Who); in fact, since both Z and Who are uninstantiated, the
new goal is in effect the same as the old one. The loop continues over and over until
the computer runs out of stack space or the user interrupts the computation.

We can fix the problem by replacing [4] with the following:

ancestor(X,Y) :- parent(X,Z), ancestor(Z,Y). {51

This definition will still follow an ancestor-descendant chain down an unlimited
number of generations, but now it insists on finding a parent-child relation in each
step before calling itself again. As a result, it never gets into endless loops.. Many,
though not all, transitive relations can be expressed in this way in order to prevent
looping.

Finally, and more obviously, Prolog can get into a loop whenever two rules call
each other without imposing any additional conditions. For example:

Sec. 1.15. Using the Debugger to Trace Execution 27

human_being(X) :- person(X).
person(X) :- human_being(X).

The cure in this case is to recognize that the predicates human_being and person are
equivalent, and use only one of them.

It is possible to have a computation that never halts but never repeats a query.
For instance, with the rules:

positive_integer(1).
positive_integer(X) :- Y is X~1, positive_integer(Y).

the query ‘7~ positive_integer(2.5).” generates the endless sequence:

?- positive_integer(1.5).
7- positive_integer(0.5).
?- positive_integer(-0.5).
?- positive_integer(-1.5).

and so on.

Exercise 1.14.1

Add to FAMILY.PL the predicate related(X,Y) such that X is related to Y if X and Y
have any ancestor in common but are not the same person. (Note that when you ask
for all the solutions, it will be normal to get many of them more than once, because if
two people have one ancestor in common, they also have earlier ancestors in common,
several of whom may be in the knowledge base.)

Verify that Michael and Julie are related, Cathy and Danielle are related, but
Michael and Melody are not related.

Exercise 1.14.2

Describe how to fix positive_integer so that queries with noninteger arguments would
fail rather than looping. (You haven’t been given quite enough Prolog to actually
implement your solution yet.)

1.15. USING THE DEBUGGER TO TRACE EXECUTION

Almost all Prolog systems have a DEBUGGER (perhaps it should be called a tracer)
modeled on the one in Edinburgh Prolog. The debugger allows you to trace exactly
what is happening as Prolog executes a query. Here’s an example (using GEO.PL):

?- spy(located.in/2). (specifies what predicate you are tracing)
yes

?- trace. (turnson the debugger)

yes

?- located_in(toronto,canada).

** (0) CALL: located in(toronto,camada) ? > (press Return)
*+ (1) CALL: located. in(toronto,ontario) ? > (press Return)
*+ (1) EXIT: located in(toronto,ontario) ? > (press Return)
** (0) EXIT: located.in(toronto,canada) ? > (press Return)
yes

28 Introducing Prolog Chap. 1

That is: to prove located_in(toronto,canada), the computer first had to prove
located in(toronto,ontario). Here’s an example in which the backtracking is
more complicated:

?- located_in(What,texas).

*x (0) CALL: located.in(_0085,texas) ? > (Return)
** (0) EXIT: located_in(houston,texas) ? > (Return)
What = houston ->;

** (0) REDO: located_inChouston,texas) ? > (Refurn)
** (0) EXIT: located_in(austin,texas) ? > (Return)
What = austin ->;

*x (0) REDO: located_in(austin,texas) ? > (Return)
*x (0) FAIL: located.in(_0085,texas) ? > (Return)
no

Here _0085 denotes an uninstantiated variable. Notice that each step is marked one
of four ways:

CALL marks the beginning of execution of a query;

REDO means an alternative solution is being sought for a query that has already
succeeded once;

EXIT means that a query has succeeded;

FAIL means that a query has failed.

If you keep hitting Return you will see all the steps of the computation. If you
hit s (for “skip”), the debugger will skip to the end of the current query (useful if
the current query has a lot of subgoals which you don’t want to see). If you hit a
(“abort”), the computation will stop.

To turn off the debugger, type

?- notrace.

To learn more about what the debugger can do, consult your manual.

Exercise 1,15.1

Use the debugger to trace each of the following queries:

?- located_in(austin,What). (using GEO.PL)

?- parent(michael,cathy). (using FAMILY.PL)

?- uncle(Who,cathy). (using your solution to Exercise 1.12.4)

?- ancestor(Who,cathy). (using FAMILY.PL with [4] and [5] from section 1.14)

Describe what happens in each case.

1.16. STYLES OF ENCODING KNOWLEDGE

In FAMILY.PL, we took the relations “mother” and “father” as basic and defined all
other relations in terms of them. We could equally well have taken “parent” as basic
and used it (along with “male” and “female”) to define “mother” and “father”:

Sec. 1.16. Styles of Encoding Knowledge 29

parent (michael,cathy) . % This is not all of FAMILY.PL
parent (melody,cathy).

parent(charles_gordon,michael).

parent (hazel,michael).

male(michael).
male(charles_gordon).

female(cathy).
female (melody) .
female (hazel).

father(X,Y) :- parent(X,Y), male(X).
mother(X,Y) :- parent(X,Y), female(X).

Is this an improvement? In one sense, definitely so, because now the information is
broken down into simpler concepts. If you say “mother” you're asserting parent-
hood and femaleness at once; if you say “parent” and “female” separately, you're
distinguishing these two concepts.

Not only that, but now you can tell without a doubt who is female and who is
male. In FAMILY.PL, you could deduce that all the mothers are female and all the
fathers are male, but you’d still have to state separately that Cathy is female (she’s
not a mother).

Which style is computationally more efficient depends on the kinds of queries
tobe answered. FAMILY.PL can answer “father” and “mother” queries more quickly,
since they do not require any inference. But the representation that takes “parent”
as basic can answer “parent” queries more quickly.

Unlike other knowledge representation languages, Prolog does not force the
knowledge base builder to state information in a particular logical style. Information
can be entered in whatever form is most convenient, and then appropriate rules can
be added to retrieve the information in a different form. From the viewpoint of the
user or higher- level rule issuing a query, information deduced through rules looks
exactly like information entered as facts in the knowledge base.

Yet another style is sometimes appropriate. We could use a “data-record”
format to encode the family tree like this:

person(cathy,female,michael ,melody) .
person(michael,male,charles_gordon,hazel).
person(melody,female,jim,eleanor).

Each record lists a person’s name, gender, father, and mother. We then define
predicates to pick out the individual pieces of information:

male(X) :- person(X,male,_,_).

female(X) :- person(X,female,_,_).
father(Father,Child) :- person(Child,_,Father,_).
mother (Mother,Child) :- person(Child,_,_,Mother).

30 Introducing Prolog Chap. 1

The only advantage of this style is that the multiargument facts are often easy to
generate from conventional databases, by simply printing out the data in a format
that conforms to Prolog syntax. Human beings find the data-record format much
less readable than the other formats, and it is, if anything, slower to process than a
set of one- or two-argument facts.

Exercise 1.16.1

Databases often contain names and addresses. Take the names and addresses of two or
three people and represent them as a set of Prolog facts. Many different approaches are
possible; be prepared to justify the approach you have taken.

1.17. BIBLIOGRAPHICAL NOTES

Two indispensable handbooks of Prolog practice are Sterling and Shapiro (1994)
and O’Keefe (1990); the former concentrates on theory and algorithms, the latter on
practical use of the language.

There is alarge literature on detection and prevention of endless loops in Prolog;
see, for example, Smith, Genesereth, and Ginsberg (1986) and Bol (1991). Most loops
can be detected, but there may be no way to tell whether the looping computation
should succeed or fail. '

Chapter 2

Constructing Prolog Programs

2.1. DECLARATIVE AND PROCEDURAL SEMANTICS

In the previous chapter we viewed Prolog primarily as a way of representing knowl-
edge. We saw that the crucial difference between a Prolog knowledge base and a
conventional database is that, in Prolog, inferred or deduced knowledge has the
same status as information stored explicitly in the knowledge base. That is, Prolog
will tell you whether a query succeeds, and if so, with what variable instantiations. It
does not normally tell you whether the answer was looked up directly or computed
by inference. ’

Prolog interprets clauses as procedure definitions. As a result, the language
has both a DECLARATIVE SEMANTICS and a PROCEDURAL SEMANTICS. Any Prolog
knowledge base can be understood declaratively as representing knowledge, or
procedurally as prescribing certain computational actions.

Even for knowledge representation, Prolog is not perfectly declarative; the pro-
grammer must keep some procedural matters in mind. For instance, as we saw,
some declaratively correct knowledge bases produce endless loops. In other cases
two declaratively equivalent knowledge bases may be vastly different in computa-
tional efficiency.

Moreover, a procedural approach is necessary if we want to go from writing
knowledge bases, which can answer queries, to writing programs that interact with
the user in other ways.

This chapter will concentrate on the procedural interpretation of Prolog. We
willintroduce built-in predicates for input and output, for modifying the knowledge

31

32 Constructing Proiog Programs ~ Chap. 2

base, and for controlling the backtracking process.

The programs in this chapter will contain both a knowledge base and a set of
procedures. For brevity, we will usually use a trivially simple knowledge base. Bear
in mind, however, that the powerful knowledge base construction techniques from
the previous chapter are equally usable here.

The input-output predicates introduced in this chapter are those of Edinburgh
Prolog. It is expected that commercial implementations will continue to support
them even though the input-output system of ISO Prolog is not entirely the same.
We’ll look at the ISO Prolog input-output system in Chapter 5; it is described in detail
in Appendix A.

2.2. OUTPUT: write, nl, display

The built-in predicate write takes any Prolog term as its argument and displays that
term on the screen. The built-in predicate nl, with no arguments, advances to a new
line. For example:

?- write(’Hello’), write(’Goodbye’).
HelloGoodbye

yes

?- write(’Hello’)}, nl, write(’Goodbye’).
Hello

Goodbye

yes .

Recall that “yes” is printed after every successful query. We often use write to print
out a value obtained by instantiating a variable:

?- mother(X,cathy), write(’The mother of Cathy is ’), write(X).
The mother of Cathy is melody
yes

Notice that melody is written in all lower case, just as in the knowledge base.

If its argument is an uninstantiated variable, write displays a symbol such as
-0001, uniquely identifying the variable but not giving its name. Try a query such
as

?- write(X).

to see what uninstantiated variables look like in your implementation.

Notice that write displays quoted atoms, such as ’Hello there’, without
the quotes. The omission of quotes means that terms written onto a file by write
cannot easily be read back in using Prolog syntax. If you write hello there’ you
get hello there, which will be read back in as two atoms, not one. To solve this
problem, Prolog offers another predicate, called writeq, thatincludes quotes if they
would be needed for reading the term back in:

Sec. 2.2, Output: write, nl, display 33

?7- writeq(’hello there’).
’hello there’
yes

Another predicate, called display, puts all functors in front of their arguments
even if they were originally written in other positions. This makes display useful
for investigating the internal representation of Prolog terms. For example:

?- display(2+2).
+(2,2)
yes

This shows that + is an infix operator. We will deal with arithmetic operators in
Chapter 3. For now, be aware that 2+2 does not represent the number 4; it is a data
structure consisting of a 2, a +, and another 2.

Still another predicate, write_canonical, combines the effects of writ eq and
display:

7~ write_canonical(2+3).

+(2,3)

?- write_canonical(’hello there’).
’helloc there’

Not all Prologs have write_canonical; Quintus Prolog and the ISO standard include
it.

Exercise 2.2.1

Predict the output of each of the following queries, then try the queries on the computer
to confirm your predictions:

?- write(aaa), write(bbb).

?- write(aaa), nl, write(bbb).

?- writeq(aaa).

?- display(aaa).

?7- write(’don’’t panic’).

?- writeq(’don’’t panic’).

?- display(’don’’t panic’).

?- write(Dontpanic).

?- writeq(Dontpanic).

?- display(Dontpanic).

?- write(3.14159%2).

?- display(3.14159%2).

7~ write(’an\\example’).

?- display(’an\\example’).

Also try out write_canonical if your implementation supports it. If you're bursting
with curiosity about how to do arithmetic in Prolog, try this query:

7- What is 3.14159+2,

34 Constructing Prolog Programs ~ Chap. 2
2.3. COMPUTING VERSUS PRINTING

It's important to distinguish queries that perform input-output operations from
queries that don’t. For example, the query

?- mother(X,cathy), write(X).

tells the computer to figure out who is the mother of Cathy and print the result. By
contrast, the query

?- mother(X,cathy).

tells the computer to identify the mother of Cathy, but does not say to print anything.
If you type the latter query at the Prolog prompt, the value of X will get printed,
because the Prolog system always prints the values of variables instantiated by
queries that have not performed any output of their own. However, it's important
to understand that mother/2 isn’t doing the printing; the Prolog user interface is.

A common mistake is to construct a predicate that prints something when you
were assigned to construct a predicate that computes it, or vice versa. Normally, in
Prolog, any predicate that does a computation should deliver the result by instanti-
ating an argument, not by writing on the screen directly. That way, the result can be
passed to other subgoals in the same program.

Exercise 2.3.1
Add to FAMILY.PL the following two predicates:
¢ A predicate cathys_father(X) that instantiates X to the name of Cathy’s father.

o A predicate print_cathys_father (with no arguments) that writes the name of
Cathy’s father on the screen.

2.4. FORCING BACKTRACKING WITH fail

The built-in predicate fail always fails; you can use it to force other predicates to
backtrack through all solutions. For an example, consider the tiny knowledge base
in Figure 2.1 (CAPITALS.PL). The query

?- capital_of(State,City),write(City),
write(’ is the capital of ’),write(State),nl.

will display information about the first state it finds. A few Prolog systems will
then invite you to type ‘;” to get alternative solutions, but most Prologs will not do
this, because they assume that if you used write, you must have already written out
whatever it was that you wanted to see.

That’s where fail comes in. To print out all the alternatives, you can phrase

the query like this:

Sec. 2.4. Forcing Backtracking with fail 35

% File CAPITALS.PL or KB.PL
% Knowledge base for several examples in Chapter 2

:- dynamic(capital_of/2). % Omit this line if your Prolog
% does not accept it.

capital_of(georgia,atlanta).
capital_of(california,sacramento).
capital_of(florida,tallahasses).
capital_of (maine,augusta).

Figure 2.1 A small knowledge base about states and capitals.

?- capital_of(State,City),write(City),
write(’ is the capital of ?),write(State),nl,fail.
atlanta is the capital of georgia
sacramento is the capital of california
tallahassee is the capital of florida
augusta is the capital of maine
no

In place of fail you could have used any predicate that fails, because any failure
causes Prolog to back up to the most recent untried alternative. The steps in the
computation are as follows:

1. Solve the first subgoal, capital_of(State,City), by instantiating State as
georgia and City as atlanta.

2. Solve the second, third, fourth, and fifth subgoals (the three writes and nl) by
writing atlanta is the capital of georgia and starting a new line.

3. Try to solve the last subgoal, fail. This subgoal cannot be solved, so back up.

4. The most recent subgoal that has an alternative is the first one, so pick another
state and city and try again.

Figure 2.2 shows part of this process in diagrammatic form. Notice that the
writes are executed as the computer tries each path that passes through them,
whether or not the whole query is going to succeed. In general, a query does not
have to succeed in order to perform actions. We say that write has the SIDE EFFECT
that whenever it executes, something gets written to the screen, regardless of whether
the whole query is going to succeed.

. Notice also that upon hitting fail, the computer has to back up all the way
back to capital_of (State,City) to get an alternative. It is then free to move
forward through the writes again, since it is now on a different path. Input-output
predicates such as write, writeq, nl, and display do not yield alternative solutions
upon backtracking. For instance, the query

36 Constructing Prolog Programs Chap. 2

?- capital_of(State,City), write(City),
write(’ is the capital of), write(State), ni.

Clause 1 Clause 2 Clause 3
State = geoargia State = california State = florida
City = atlanta City = sacramentc City = tallahassee
7. write(atlanta). ?- write(sacramento). ?- write(tallahassee).
?- write(' is the capital of). ?- write(' is the capital of). ?- write(’ is the capital of)
?- write(georgia). ?- write(california). ?- write(florida).
?- nl. ?- nl. ?- nl,
?- fail. ?- fail. ?- fail.

Figure 2.2 Queries to write and nl do not generate alternatives.

?- write(Phello?),fail.

writes hello only once. That is, write, writeq, nl, and display are DETERMINISTIC
(or, as some textbooks express it, they CANNOT BE RESATISFIED).
Exercise 2.4.1

Take the first example of £ail given at the beginning of this section, and replace fail
with some other query that will definitely fail. What happens?

Exercise 2.4.2

In your Prolog system, what happens if you try to query a predicate that doesn't exist?
Does the query fail, or do you get an error message? Experiment and find out.

Exercise 2.4.3

Recall that CAPITALS.PL does not list Idaho. Assuming that CAPITALS.PL has been
consulted, what is output by each of the following two queries? Explain the reason for
the difference.

?- capital_of(idaho,C), write(’The capital of Idaho is ’), write(C).

?~ write(’The capital of Idaho is ’), capital_of(idaho,C), write(C).

Exercise 2.4.4

Using FAMILY.PL and your knowledge from Chapter 1, construct a query that will print
out the names of all the ancestors of Cathy like this:

Sec. 2.5. Predicates as Subroutines 37

The ancestors of Cathy are: michael melody charles_gordon (etc.)

Define the predicate ancestor and use it in the query.

2.5. PREDICATES AS SUBROUTINES

The query in the examples in the previous section was rather cumbersome. It can be
encapsulated into a rule as follows:

print_capitals :- capital_of(State,City),
write(City),
write(’is the capital of *),
write(State),
nl,
fail.

Then, the query
?- print_capitals.

will have the same effect as the much longer query that it stands for. In effect, the rule
defines a subroutine; it makes it possible to execute all the subgoals of the original
query by typing a single name.

In this case, there are advantages to defining two subroutines, not just one:

print_a_capital :- capital_of(State,City),
write(City),
write(’ is the capital of ’),
write(State),
nl.

print_capitals :- print_a_capital,
’ fail.

This makes the program structure clearer by splitting apart two conceptually separate
operations — printing one state capital in the desired format, and backiracking
through all alternatives.

Predicate definitions in Prolog correspond to subroutines in Fortran or proce-
dures in Pascal. From here on, we will often refer to Prolog predicate definitions as
PROCEDURES.

There’s one more subtlety to consider. Any query to print_capitals will
ultimately fail (although it will print out a lot of useful things along the way). By
adding a second clause, we can make print_capitals end with success rather than
failure:

print_capitals :- print_a_capital, % Clause 1
fail.

print_capitals. % Clause 2

38 Constructing Prolog Programs Chap. 2

Now any query to print_capitals will backtrack through all the solutions to
Print_a_capital, just as before. However, after the first clause has run out of
solutions, execution will backirack into the second clause, which Succeeds without
doing anything further.

Exercise 2.5.1

Get print_capitals working on your computer. Try the query
?- print_capitals, write(’All doms.).
with and without Clause 2. What difference does Clause 2 make?

Exercise 2.5.2

Go back to FAMILY.PL and your solution to Exercise 2.4.4. Define a predicate called
print_ancestors.of that takes one argument (a person’s name) and prints out the
names of all the known ancestors of that person, in the same format as in Exercise 2.4.4.

2.6. INPUT OF TERMS: read

The built-in predicate read accepts any Prolog term from the keyboard. That term
must be typed in the same syntax as if it were within a Prolog program, and it must
be followed by a period. For example:

?- read(X).

hello. (typed by user)
X = hello

yes

?- read(X).

’hello there’. (typed by user)
X = ’hello there®

yes

?- read(X).
hello there. (typed by user)
-—Syntax error--

Crucially, if the period is left out, the computer will wait for it forever, accepting line after
line of input in the hope that the period will eventually be found.

If the argument of read is already instantiated, then read will try to unify that
argument with whatever the user types, and will succeed if the unification succeeds,

and fail if the unification fails:

7~ read(hello).

hello. (typed by user)
yes

?- read(hello).
goodbye, (typed by user)
no .

Sec. 2.6. Input of Terms: read 39

% File INTERAC.PL
% Simple interactive program

capital_of(georgia,atlanta).
capital_of(florida,tallahassee).

go :- write(’What state do you want to know about?’),nl,
vrite(’Type its name, all lower case, followed by a period.’),nl,
read(State),
capital_of(State,City),
write(’Its capital is: ’),write(City),nl.

Figure 2.3 Aninteractive program.

Note in particular that read(yes) will succeed if the user types ‘yes.’ and fail if
the user types anything else. This can be a handy way to get answers to yes-no
questions.

With read, the user can type any legal Prolog term, no matter how complex:

7- read(X).

mother (melody,cathy) .

X = mother(melody,cathy)
yes

Exactly as in programs, unquoted terms that begin with upper case letters are taken
to be variables:

?7- read(X).

A. (typed by user)
X = _0091

yes

?- read(X).

£(9) - g(D). (typed by user)
X = (£(.0089) :~ g(_0089))

yes

Here _0091 and _0089 stand for uninstantiated variables.

Like write, writeq, nl, and display, read is deterministic, i.e., it does not yield
alternative solutions upon backitracking.

Figure 2.3 shows a program, INTERAC.PL, that uses read to interact with the
user. A dialogue with INTERAC.PL looks like this:

7- go.

What state do you want to know about?

Type its name, all lower case, followed by a period:
florida.

Its capital is: tallahassee

40 Constructing Prolog Programs Chap. 2

The need to follow Prolog syntax can be a real inconvenience for the user. The period
is easy to forget, and bizarre errors can result from uppercase entries being taken as
variables. In Chapter 5 we will show you how to get around this. In the meantime,
note that read makes a good quick-and-dirty substitute for more elaborate input
routines that will be added to your program later. Also, consult your manual for
more versatile input routines that your implementation may supply.

Exercise 2.6.1

Try out INTERAC PL. (Consult it and type ‘2~ go.’ to start it.) What happens if you
begin the name of the state with a capital letter? Explain why you get the results that
you do.

Exercise 2.6.2
If you wanted to mention South Carolina when running INTERAC.PL, how would you
have to type it?

Exercise 2.6.3

Using FAMILY.PL, write an interactive procedure find_mother (with no arguments)
that asks the user to type a person’s name, then prints out the name of that person’s
mother.

Exercise 2.6.4
What does read(yes) do if the user responds to it by typing each of the following? Does
it succeed, fail, or crash with an error message? Why?

yes.
no.

Exercise 2.6.5

Does read ignore comments in its input? Try it and see.

2.7. MANIPULATING THE KNOWLEDGE BASE

Much of the power of Prolog comes from the ability of programs to modify them-
selves. The built-in predicates asserta and assertz add clauses to the beginning
and end, respectively, of the set of clauses for the predicate, and retract removesa
clause. (Many Prologs accept assert as an alternative spelling for assertz; we will
often refer to asserta and assertz generically as assert.)

The argument of asserta or assertz is a complete clause. For example,

?- asserta(capital_of (hawaii,honolulu)).

Sec. 2.7. Manipulating the Knowledge Base 41

inserts capital_of (hawaii,honolulu) immediately before the other clauses for
capital_of, and

7~ assertz(capital_of(wyoming,cheyenne)).

adds a fact at the end of the clauses for capital_of.

The argument of retract is either a complete clause or a structure that matches
the clause but contains some uninstantiated variables. The predicate must be instan-
tiated and have the correct number of arguments. For example,

?- retract(mother (melody,cathy)).
removes mother (melody,cathy) from the knowledge base, and
?- retract(mother(X,Y)).

‘finds the first clause that matches mother (X,Y) and removes it, instantiating X and
Y to the arguments that it found in that clause. If there is no clause matching
mother(X,Y¥), then retract fails.

Extra parentheses are required when the argument of asserta, assertz, or
retract contains a comma or an “if” operator:

?- asserta((male(X) :- father(X))).
7- asserta((can_f1y(X) :- bird(X), \+ penguin(X))).
7~ retract((parent(X,Y) :- Z)).

The parentheses make it clear that the whole clause is just one argument.

The effects of assert and retract are not undone upon backtracking. These
predicates thus give you a “permanent” way to store information. By contrast,
variable instantiations store information only temporarily since variables lose their
values upon backtracking. (Note that assert and retract modify only the knowl-
edge base in memory; they don't affect the disk file from which that knowledge base

was loaded.)
The predicate abolish removes all the clauses for a particular predicate with a
particular arity, and succeeds whether or not any such clauses exist: !

?- abolish(mother/2).
Finally, to see the contents of the knowledge base in memory, type:
?~ listing.

To see only a particular predicate, type, for example, ‘?- listing(mother).’ or
‘?2- listing(mother/2).” Note that listing is notin the ISO standard, and its exact
behavior varies somewhat from one implementation to another.

Exercise 2.7.1

What would be in the knowledge base if you started with it empty and then performed
the following queries in the order shown?

'In ALS Prolog and SWI Prolog, write abolish (mother,2) instead of abolish(mothex/2).

42 Constructing Prolog Programs Chap. 2

?- asserta(green(kermit)).

?- assertz(gray(gonzo)).

7~ asserta(green(broccoli)).

?- assertz(green(asparagus)).

?- retract(green(X)).

Predict the result, then try the queries and use listing to see if your prediction was
right.

Exercise 2.7.2

What does the following Prolog code do?
1= dynamic(£/0). % Omit this line if your Prolog
% does not accept it

test :- f, write(’Not the first time’).

test :- \+ f, asserta(f), write(’The first time’).
Try the query ‘?- test.’ several times and explain why it does not give the same result
each time.

2.8. STATIC AND DYNAMIC PREDICATES

Back in DEC-10 days, all the clauses in the Prolog knowledge base were equal in
status — any clause could be retracted, abolished, or examined at run time.

Nowadays, however, many Prolog implementations distinguish STATIC from
DYNAMIC predicates. ~ Dynamic predicates can be asserted and retracted. Static
predicates cannot, because their clauses have been compiled into a form that runs
faster but is no longer modifiable at run time.

In the ISO standard and many present-day implementations, all predicates are
static unless you make them dynamic. In some Prologs, all predicates are dynamic.
In others, predicates are dynamic if you load them consult or reconsult, or static if
you load them with compile.

One way to make a predicate dynamic is to create it using assert. Another
way is to create it in the usual way (by putting clauses in your program file), but
precede those clauses with a declaration such as

:~ dynamic(capital_of/2).

to tell the Prolog system that the predicate capital_of/2 (or whatever) should be
stored in a way that allows you to assert and retract its clauses.

That'’s the reason for the dynamic declaration in CAPITALS.PL (page 35). As
youmight guess, we're going to be asserting some additional clauses into capital_of
at run time.

Dynamic declarations have another effect, too: They tell the Prolog system not
to worry if you try to query a predicate that doesn’t exist yet. In many Prologs, a
query like

(o f(a’b)-

Sec. 2.9. More about consult and reconsult 43

will raise an error condition if there are no clauses for £/2 in the knowledge base.
The computer has, of course, no way of knowing that you are going to assert
some clauses later and you just haven't gotten around to it. If you have declared
‘:- dynamic(£/2).’ then the query will simply fail without raising an error condi-
tion.

Finally, note that abolish wipes out not only a predicate but also its dynamic
declaration, if there is one. To retract all the clauses for a predicate without wiping
out its dynamic declaration, you could do something like this:

clear_away_my_predicate :- retract(f(_,_)), fail.
clear_away_my_predicate :- retract(f(_,.) :- _), fail.

clear_away_my_predicate.

That is: Retract all the facts that match £(_,_), then retract all the rules that begin
with £(_,_), and finally succeed with no further action.

Exercise 2.8.1

Does your Prolog allow you to use dynamic declarations? If so, do they affect whether
or not you can assert and retract clauses? Try consulting CAFITALS.PL and then
performing the queries:

7- retract(capital_of(X,Y)).

?- assertz(capital_of (kentucky,frankfort)).

Exercise 2.8.2

In your Prolog, does 1isting show all the predicates or only the dynamic ones? State
how you found out.

Exercise 2.8.3

Does your Prolog let you use compile as an alternative to consult or reconsult? If so,
does it affect whether predicates are static or dynamic?

2.9. MORE ABOUT consult AND reconsult

We can now say, with some precision, exactly what consult and reconsult do. Their
job is to read a whole file of Prolog terms, using read/1, and assert each term into
the Prolog knowledge base as a fact or rule.
There is one exception. Any terms that begin with :- are executed as queries
the moment consult or reconsult sees them. We call such terms EMBEDDED QUERIES.
If you consult this file,

:~ write(’Starting...’),nl.
green(kermit).
green(asparagus).

;- write(’Finished’) ,nl.

44 Constructing Prolog Programs Chap. 2

the messages Starting. .. and Finished will appear at the beginning and the end of
the consulting process, respectively. (A few Prologs use ?- instead of : -, and some
Prologs take either one.)

Can you use an embedded query to make your program start executing the
moment it is loaded? Possibly. We often did this in the previous edition of this
book, but we no longer recommend it because it is not compatible with all Prologs.
The question of how to start execution really arises only when you are compiling
your Prolog program into a stand-alone executable (an .EXE file or the like), and the
manual for your compiler will tell you how to specify a starting query. For portable
programs that are to be run from the query prompt, you could embed a query that
gives instructions to the user, such as

:- write(’Type ’’go.?’ to start.’).

at the end of the program file. In this book, we will often use the names go oOr start
for the main procedure of a program, but this is just our choice; those names have
no special significance in Prolog.

The difference between consult and reconsult, as we noted in Chapter 1,
is that upon encountering the first clause for each predicate in the file, reconsult
throws away any preexisting definitions of that predicate that may already be in the
knowledge base. Thus, you can reconsult the same file over and over again without
getting multiple copies of it in memory. In fact, some Prologs no longer maintain
this distinction; in Quintus Prolog, for example, consult is simply another name
for reconsult. In SWI Prolog, consult acts like the old reconsult, and reconsult
doesn’t exist.

One very good use of embedded queries is to include one Prolog file into
another. Suppose FILE1.PL contains a predicate that you want to use as part of
FILE2 PL. You can simply insert the line

:- reconsult(’filel.pl’).

near the top of FILE2.PL. Then, whenever youconsultor reconsult FILE2.PL, FILE1.PL
will get reconsulted as well (provided, of course, it is in your current directory!). Bet-
ter yet, if your Prolog permits it, use the embedded query

:~ ensure_loaded(’filel.pl’).

which will reconsult FILE1.PL only if it is not already in memory at the time. Quintus
Prolog and the ISO standard support ensure_loaded, but in order to accommodate
other Prologs, we will generally use reconsult in this book.

Finally, what if the clauses for a single predicate are spread across more than
one file? Recall that reconsult will discard one set of clauses as soon as it starts
reading the other one. To keep it from doing so, you can use a declaration like this:

:- multifile(capital_of/2).

That is: “Allow clauses for capital_of/2 to come from more than one file.” This
declaration must appear in every file that contains any of those clauses. At least,
that’s how it’s done in Quintus Prolog and in the ISO standard; consult your manual
to find out whether this applies to the Prolog that you are using.

Sec. 2.10. File Handling: see, seen, tell, told a5

Exercise 2.9.1

Dces your Prolog support embedded queries beginning with “:~"? With “7-"? Experi-
ment and see.

Exercise 2.9.2

By experiment, find out whether your Prolog supports ensure_loaded and whether it
supports multifile.

2.10. FILE HANDLING: see, seen, tell, told

In this section we introduce the simple file operations that are supported by Edin-
burgh Prolog; most implementations support considerably more, and so does the
I1SO standard (see Chapter 5 and Appendix A).

The built-in predicate see takes a file name as an argument. It opens that file
for input (if it is not already open) and causes Prolog to take input from that file
rather than from the keyboard. The predicate seen closes all input files and switches
input back to the keyboard. Thus, the following query reads the first three Prolog
terms from file MYDATA:

?- see(’mydata’),
read(X),
read(Y),
read(Z),
seen.

As long as a file is open, the computer keeps track of the position at which the next
term will be read. By calling see repeatedly, you can switch around among several
files that are open at once. To switch to the keyboard without closing the other input
files, use see (user). Thus:

?- see(’aaa’),
read(X1), % read first term from AAA
see(’bbb’),
read(X2), % read first term from BBB
see(user),

read (X3), % read a term from the keyboard
see(’aaa’),

read(4), % read second term from AAA
seen. % close all input files

On attempting to read past the end of a file, read returns the special atom end_of_file
(*'EOF’ in Cogent Prolog and Amzi Prolog). If the attempt is repeated, some im-
plementations return end_of_£ile over and over, and some raise an error condition.

The predicate tell opens a file for output and switches output to that file; told
closes output files and switches output back to the console. Here is how to create
a file called YOURDATA and write Hello there on it:

46 Constructing Prolog Programs ~ Chap. 2

?- tell(’yourdata’),
write(’Hello there’),
nl,
told.

Like see, tell can have several files open at once:

?- tell(Caaa’),
write(’First line of AAA’),nl,
tell(’bbb’),
write(’First line of BBB’),nl,
tell (user),
write(*This goes on the screen’),nl,
tell(’aaa’),
write(’Second line of AAA’),nl,
told.

The biggest disadvantage of tell is that if something goes wrong, the error messages
appear on the file, not the screen. Likewise, if something goes wrong while see is in
effect, youmay notbe able to make the computer accept any input from the keyboard.
In general, see, seen, tell, and told are barely adequate as a file handling system; we
will use them often in this book because of their great portability, but you should jump
at every chance to use a better file input-output system (implementation-specific or
ISO standard as the case may be).

Exercise 2.10.1

Use the following query to create a text file:

?~ tell(myfile),
vrite(green(kermit)), write(’.’), ml,
write(green(asparagus)), write(’.’), ni,
told.

What gets written on the file?

Exercise 2.10.2
Construct a query that will read both of the terms from the file you have just created.

2.11. A PROGRAM THAT “LEARNS"

Now we're ready to put together a program that “learns” — or more specifically, a
program that adds new information to its knowledge base as it runs, then “remem-
bers” that information at the next session.

Adding new information is easy — we’ll use assert. To save the information
until the next session, we'll use a trick: We'll redirect output toa fileand doa list ing
of the modified predicate, thereby storing a set of clauses that can be reconsulted
by the same program the next time it runs.

The program that learns is called LEARNER.PL (Figure 2.4). It attempts to
name the capital of any state that the user asks about. If it cannot do so, it asks

Sec. 2.11. A Program that “Learns” a7

the user to name the capital and stores the information in its knowledge base. The
knowledge base is stored on a separate file called KB.PL, which is initially a copy
of CAPITALS.PL but gets rewritten every time the user terminates the program. A
dialogue with LEARNER.PL looks like this:

7- start.
Type names all in lower case, followed by pericd.
Type "stop." to quit.

State? georgia.
The capital of georgia is atlanta

State? hawaii.

I do not knmow the capital of that state.
Please tell me.

Capital? honolulu.

Thank you.

State? maine.
The capital of maine is augusta

State? hawaii.
The capital of hawaii is honolulu

State? stop.
Saving the knowledge base...
Done.

Notice that the program has “learned” what the capital of Hawaii is. The “learning”
is permanent — if you run the program again and ask for the capital of Hawaii, you
will henceforth get the correct answer.

LEARNER.PL uses three predicates: start, process_a_query, and answer. Its
structure is a recursive loop, since process_a_query calls answer and, under most
conditions, answer then calls process_a_query. In Pascal or a similar language, this
kind of loop would be very bad form, but in Prolog it is one of the normal ways
of expressing repetition. Further, as we will see in Chapter 4, the program can be
modified so that the recursive calls do not consume stack space.

The predicate start simply loads the knowledge base (using reconsult so
that the program can be run again and again with impunity), prints the introductory
message, and calls process_a_query for the first time. Then process_a_query asks
the user to name a state, accepts a term as input, and passes it to answer.

The predicate answer does one of three things, depending on its argument. If
the argument is stop, it saves a new copy of the knowledge base that contains any
information added during the run, then prints Done and terminates successfully.

Otherwise, if the argument is a state that can be found in the knowledge base,
answer looks up the capital and writes it on the screen. If the argument is a state
that is not in the knowledge base, answer asks the user for the requisite information,

43 Constructing Prolog Programs ~ Chap. 2

constructs the appropriate fact, and adds it using assertz. In either of these latter
cases answer then calls process_a_query to begin the cycle anew.

Exercise 2.11.1

Get LEARNER PL working on your computer and confirm that it performs as described.
In particular, confirm that LEARNER PL remembers what it has learned even after you
exit Prolog completely and start everything afresh. What does KB.PL look like after
several states and capitals have been added?

Exercise 2.11.2

In LEARNER PL, what is the effect of the following line?
write(’:~ dynamic(capital_of/2).’),nl,
Why is it needed?

2.12. CHARACTER INPUT AND OUTPUT: get, get0, put

The built-in predicate put outputs one character; its argument is an integer that gives
the character’s ASCII code. For example:

?7- put(42).
*

yes

Here 42 is the ASCII code for the asterisk. You can use put to outputnot only printable
characters, but also special effects such as code 7 (beep), code 8 (backspace), code 12
(start new page on printer), or code 13 (return without new line).

ASCII stands for American Standard Code for Information Interchange. Table
2.1 lists the 128 ASCII characters; some computers, including the IBM PC, use codes
128 t0 255 for additional special characters. IBM mainframe computers use a different
set of codes known as EBCDIC.

The opposite of put is get. That s, get accepts one character and instantiates
its argument to that character’s ASCII code, like this:

?- get(X).
* (typed by user)
X =42

Here you will encounter a distinction between buffered and unbuffered keyboard input.
In the example just given, some Prologs will execute get (X) the moment you type
the asterisk. Most Prologs won’t see the asterisk until you have also hit Return.

We describe the keyboard as BUFFERED if the program does not receive any input
until you hit Return, or UNBUFFERED (RAW) if all incoming keystrokes are available
to the program immediately.

Note that get skips any blanks, returns, or other nonprinting characters that

may precede the character it is going to read. If you want to read every keystroke
that comes in or every byte in a file, use get0 instead. For example, if you type

7~ get0(X), getO(Y).

Sec. 2.12. Character Input and QOutput: get, get0, put 49

% File LEARNER.PL
% Program that modifies its own knowledge base

% This program requires file KB.PL, which should be a copy of CAPITALS.PL.

start :— reconsult(’kb.pl’),
nl,
write(’Type names entirely in lower case, followed by period.’), nl,
write(’Type "stop." to quit.’), nl,
nl,
process_a_query.

process_a_query :— write(’State? ?),
read(State),
answer (State).

% If user typed "stop." then save the knowledge base and quit.

answer (stop) :- write(’Saving the knowledge base...’),nl,
tell(’kb.pl?),
write(?:- dynamic(capital_of/2).’),nl, % omit if not needed
listing(capital_of),
told,
write(’Done.’),nl.

% 1f the state is in the knowledge base, display it, then
%. loop back to process_a_query

answer(State) :- capital_of(State,City),
write(’The capital of °),
write(State),
write(’ is),
write(City) ,nl,
nl’
process_a_query.

% If the state is not in the knowledge base, ask the
% user for information, add it to the knowledge base, and
% loop back to process_a_query

answer (State) :-~ \+ capital_of(State,_),
write(’I do not know the capital of that state.’),nl,
write (’Please tell me.’),nl,
write(’Capital? °),
read(City),
write (’Thank you.’),nl,nl,
assertz(capital_of(State,City)),
process_a_query.

Figure 2.4 A program that “learns.”

50

TABLE 2.1 ASCli CHARACTER SET, WITH DECIMAL NUMERIC CODES

Constructing Prolog Programs

—
SOOI AUI D WN M~

WWPMNDNDNNMNNDRN NN =2 2 b 2 b e el e
HOOOO\]O\M»BUJB»—IO\O@\]O\(H»&(»N)—I

Ctrl-e
Ctrl-a
Ctrl-B
Ctrl-¢
Ctrl-D
Ctrl-E
Ctrl-F
Cirl-6
Backspace
Tab
Ctrl-J
Ctrl-k
Ctrl-L
Returmn
Ctrl-N
Ctrl-0
Ctrl-p
Ctrl-q
Ctrl-r
Ctrl-s
Cul-t
Ctrl-u
Ctrl-v
Ctrl-w
Ctrl-x
Cirl-y
Ctrl-2
Escape
Cirl-\
Ctrl-]
Ctrl-~
Ctrl-_

32
33
34
35
36
37
38

40
41
42
43

45
46
47
48
49
50
51
52
53

55
56
57
58
59
60
61
62
63

Space
]

+ ¥~ s P

.

© 00N A WD RO~

NV O A s e

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
38
89
90
91
92
93
94
95

3I—l/r—-1N'<N#:<C3HM?UD'ODZZHNL-HNQ’TJMUOEJ>6

96

97

98

9
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

-

!‘-r'-—rHN"<!HI14ﬁdMH.D"UOﬁEI-'W'—hH'b'0QH-0 o op

Delete

Chap. 2

Sec. 2.13. Constructing Menus 51

and type * and Return, you'll see the code for * (42) followed by the code for Return
(13 or 10 depending on your implementation).

In the ISO standard, put and get0 are called put_code and get_code respec-
tively; get is not provided, but you can define it as:

get(Code) :- repeat, get_code(Code), Code>32, !.

The use of repeat and ! (pronounced “cut”) will be discussed in Chapter 4.

As you may surmise, get0 and put are used mainly to read arbitrary bytes
from files, send arbitrary control codes to printers, and the like. We’ll explore byte-
by-byte file handling in Chapter 5. On trying to read past end of file, both get and
getO return —1, except in Arity Prolog, in which they simply fail, and Cogent and
Amzi Prolog, in which they return the atom ° !EOF°’.

Exercise 2.12.1
What does the following query do? Explain, step by step, what happens.
?- write(hello), put(13), write(bye).
Exercise 2.12.2
Is Prolog keyboard input on your computer buffered or unbuffered? Explain how you
found out.
Exercise 2.12.3

When you hit Return, does get0 see code 10, code 13, or both? Explain how you found
out.

2.13. CONSTRUCTING MENUS

Figure 2.5 (MENUDEMO.PL) shows how to use get to accept single-keystroke
responses to a menu. A dialogue with this program looks like this:

Which state do you want to kmow about?
1 Georgia
2 Califormia

3 Florida
4 Maine
Type a number, 1 to 4 —-- 4

The capital of maine is augusta

Similar menus can be used in other types of programs.
Note that MENUDEMO.PL reads each response by executing both get and
get0, like this:

get_from menu(State) :- get(Code), ' read a character
get0{), % consume the Return keystroke

interpret (Code,State).

52 Constructing Prolog Programs

% File MENUDEMO.PL
% Illustrates accepting input from a menu

% Knowledge base

capital_of(georgia,atlanta).
capital_of (california,sacramento).
capital_of(florida,tallahassee).
capital_of (maine,augusta).

% Procedures to interact with user

start :- display_menu,
get_from_menu(State),
capital_of (State,City),
nl,
write(’The capital of ’),
write(State),
write(’ is ?),
write(City),
nl.

display menu :- write(’Which state do you want to know about?’),nl,
write(’ 1 Georgia’),nl,
write(® 2 Califormia’),nl,
write(’ 3 Florida’),nl,
write(’ 4 Maine’),nl,

write(’Type a number, 1 to 4 --).

get_from menu(State) :- get(Code), Y% read a character

get0(_), % consume the Return keystroke

interpret(Code,State).
interpret (49,georgia). /% ASCII 49 = °1’ =/
interpret(50,california). /* ASCII 50 = ?2° */
interpret(51,florida). /* ASCII 51 = 3’ %/
interpret (52,maine). /% ASCII 82 = 24’ =*/

Figure 2.5 Example of a program that uses a menu.

Chap. 2

Sec. 2.13. Constructing Menus 53

% File GETYESNO.PL
% Menun that obtains ’yes’ or ’no’ amswer

get_yes_or_no(Result) :- get(Char), % read a character
get0(), % consume the Return after it
interpret(Char,Result),
L % cut -- see text

get_yes_or_no(Result) :- nl,
put(7), 7 beep
write(°Type Y or N:’),
get_yes_or_no(Result).

interpret(89,yes). ¥ ASCII 89 = Y’
interpret(121,yes). % ASCII 121 = ‘y’
interpret(78,no). % ASCII 78 = 'N?
interpret(110,n0). J ASCII 110 = ’m’

Figure 2.6 A menu routine that gets the user to answer “yes” or “no.”

Here get (Code) skips any preceding nonprinting codes, then reads the digit 1, 2,
3, or 4 typed by the user. Then get0(_) reads the Return keystroke that follows
the letter. If your Prolog accesses the keyboard without buffering, you can remove
get0(_) and the user will get an instant response upon typing the digit.

The kind of menu that we’ll use most often is one that gets a “yes” or “no” an-
swer to a question, and won'taccept any other answers (Fig. 2.6, file GETYESNO.PL).
The idea is that from within a program, you can execute a query such as

?- get_yes_or_no(Response).

and Response will come back instantiated to yes if the user typed y or Y, or no if the
user typed n or N. If the user types anything else, he or she gets prompted to type Y
or N.

The first clause of get_yes_or_no reads a character, then calls interpret to
translate it to yes or no. If the user typed y, ¥, n, or N, the call to interpret
succeeds, and get_yes_or_no then executes a “cut” (written “!’). We’ll introduce
cuts in Chapter 4; for now, all you need to know is that cut prevents execution from
backtracking into the other clause.

If the user doesn't type y, ¥, n, or N, then interpret won’t succeed and the cut
won't get executed. In that case, get_yes_or_no will backtrack into the other clause,
beep, print Type Y or N, and call itself recursively to begin the whole process again.

Exercise 2.13.1

Adapt MENUDEMO.PL to use the first letter of the name of each state, rather than the
digits 14, to indicate choices.

54 Constructing Prolog Programs ~ Chap. 2

Exercise 2.13.2

Using get_yes_or_no, define another predicate succeed_if_yes that asks the user to
type Y or N (upper or lower case), then succeeds if the answer was Y and fails if the
answer was N.

Exercise 2.13.3

What would go wrong with get_yes_or_no if the cut were omitted?

2.14. A SIMPLE EXPERT SYSTEM

We are now ready to write an expert system, albeit a simple one. CAR.PL (Figure 2.7,
p- 57) is a program that tells the user why a car won't start. Here is one example of a
dialogue with it:

7- start.
This program diagnoses why a car won’t start.
Answer all questions with Y for yes or N for no.

When you first started trying to start the car,
did the starter crank the engine normally?

y

Does the starter crank the engine normally now?
n

Your attempts to start the car have run down the battery.
Recharging or jump-starting will be necessary.
But there is probably nothing wrong with the battery itself.

Look in the carburetor. Can you see or smell gasoline?
n

Check whether there is fuel in the tank.
If so, check for a clogged fuel line or filter
or a defective fuel pump.

CARPL has two features that would be difficult to implement in a conventional
programming language: it lists all possible diagnoses, not just one, and it does not
ask questions unless the information is actually needed. Both of these features are
exemplified in the following dialogue.

?- start.

This program diagnoses why a car wonm’t start.
Answer all questions with Y for yes or N for no.

When you first started trying to start the car,

Sec. 2.14. A Simple Expert System 55

did the starter crank the engine normally?
n

Check that the gearshift is set to Park or Neutral.
Try jiggling the gearshift lever.

Check for a defective battery, voltage
regulator, or alternator; if any of these is
the problem, charging the battery or jump-
starting may get the car going temporarily.
Or the starter itself may be defective.

If the starter is obviously inoperative, the other diagnoses do not come into
consideration and there is no point collecting the information needed to try them.

CAR.PL has two knowledge bases. The diagnostic knowledge base specifies
what diagnoses can be made under what conditions, and the case knowledge base
describes the particular car under consideration. The diagnostic knowledge base
resides in defect_may_be/1. The case knowledge base resides in stored_answer/2,
whose clauses get asserted as the program runs. For convenience, we have assigned
names both to the diagnoses (e.g., drained_battery) and the conditions that the
user observes and reports (e.g., fuel.is_ok). Separate predicates (explain/1 and
ask_question/1) display the text associated with each diagnosis or observation.

The diagnoses themselves are straightforward. The battery may be drained
if the starter worked originally and does not work now; the gearshift may be set
incorrectly if the starter never worked; and so on. Notice that the diagnoses are
not mutually exclusive — in particular, wrong_gear and starting_system have the
same conditions — and are not arranged into any kind of “logic tree” or flowchart.
Omne of the strengths of Prolog is that the contents of a knowledge base need not be
organized into a rigorous form in order to be usable.

The case knowledge base is more interesting since the information has to be
obtained from the user, but we do not want to ask for information that is not needed
nor repeat requests for information that was already obtained when trying another
diagnosis.

- Totake care of this, the program does not call stored_ansver directly but rather
calls user_says, which either retrieves a stored answer or asks a question, as ap-
propriate. Consider what happens upon a call to user_says(fuel_is_ok,no). The
first clause of user_says immediately looks for stored_answer (fuel_is_ok,no);
if that stored answer is found, the query succeeds. Otherwise, there are two other
possibilities. Maybe there is no stored_answer (fuel_is_ok,...) at all; in that case,
user_says will ask the question, store the answer, and finally compare the an-
swer that was received to the answer that was expected (no). If there is already a
stored_answer(fuel_is_ok,...) whose second argument is not no, the query fails
and the question is not asked.

The top-level procedure try_all_possibilities manages the whole process:

56 Constructing Prolog Programs ~ Chap. 2

try_all possibilities :~ defect_may_be(D),
explain(D),
fail,

try_all_possibilities.

The first clause finds a possible diagnosis — that is, a clause for def ect_may_be that
succeeds, instantiating D to some value. Then it prints the explanation for D. Next it
hits fail and backs up. Since explain has only one clause for each value of D, the
computation has to backtrack to defect_may_be, try another clause, and instantiate
D to a new value. In this manner, all possible diagnoses are found.

The second clause succeeds with no further action after the first clause has
failed. This enables the program to terminate with success rather than with failure.

Although small and simple, CAR.PL can be expanded to perform many kinds
of diagnosis. Itis much more versatile than the flowcharts or logic trees that would be
required to implement a diagnostic program easily in a conventional programming
language.

Exercise 2.14.1

Get CAR.PL working on your computer and demonstrate that it works as described.

Exercise 2,14.2

Modify CAR.PL to diagnose defects in some other kind of machine that you are familiar
with.

Sec. 2.14. A Simple Expert System 57

% File CAR.PL
% Simple automotive expert system

:~ reconsult(’getyesmo.pl’). ¥ Use ensure_loaded if available.

%
% Main control procedures
%

start :-
write(’This program diagnoses why a car wom’’t start.’),ml,
write(’Answer all questioms with Y for yes or N for mo.’),nl,
clear_stored_answers,
try_all_possibilities.

try_all_possibilities :- % Backtrack through all possibilities...
defect_may_be(D),
explain(D),
fail.

try_all_possibilities. % ...then succeed with no further action.

%
% Diagnostic knowledge base
% (conditions under which to give each diagnosis)

%

defect_may_be(drained_battery) :-
user_says(starter_was_ok,yes),
user_says(starter_is_ok,no).

defect_may_be(wrong_gear) :-
user_says(starter_was_ok,no).

defect_may_be(starting system) :-
user_says(starter_was_ok,no).

defect_may_be(fuel_system) :-
user_says(starter_was_ok,yes),
user_says(fuel_is_ok,no).

defect_may_be(ignition_system) :~

user_says(starter_was_ok,yes),
user_says (fuel_is_ok,yes).

Figure 2.7 A simple expert system in Prolog {continued on following pages).

58 Constructing Prolog Programs

%
4
A
A

Case knowledge base
(information supplied by the user during the comsultation)

:=~ dynamic(stored_answer/2).

%
%
4
%

% (Clauses get added as user answers questions.)

Procedure to get rid of the stored answers
vithout abolishing the dynamic declaration

¢clear_stored_answers :- retract(stored_answer(_,_)),fail.
clear_stored_answers.

%
%
%
%

Procedure to retrieve the user’s answer to each question when needed,
or ask the question if it has not already been asked

user_says(Q,A) :- stored_answer(Q,A).

user_says(Q,A) :- \+ stored_answer(Q,_),

%
%
/A

nl,nl,

ask_question(Q),
get_yes_or_no(Response),
asserta(stored_answer(Q,Response)),
Response = 4.

Texts of the questions

ask_question(starter_was_ok) :-

write(’When you first started trying to start the car,’),nl,
write(’did the starter crank the engine normally? *),nl.

ask_question(starter_is_ok) :-

write(’Does the starter crank the engine normally now? ’),nl.

ask_question(fuel_is_ok) :-

write(’Look in the carburetor. Can you see or smell gasoline?’) ,nl.

Figure 2.7 (Continued).

Chap. 2

Sec. 2.14. A Simple Expert System

% Explanations for the various diagnoses

A

explain(wrong_gear) :-
nl,
write(’Check that the gearshift is set to Park or Neutral.’),nl,
write(’Try jiggling the gearshift lever.’),nl.

explain(starting_system) :-
nl,
write(’Check for a defective battery, voltage’),nl,
write(’regulator, or alternator; if any of these is’),nl,
write(’the problem, charging the battery or jump-’),nl,
write(’starting may get the car going temporarily.’),nl,
write(’0Or the starter itself may be defective.’),nl.

explain(drained_battery) :-
nl,
write(’Your attempts to start the car have run down the battery.’),nl,
write(’Recharging or jump-starting will be necessary.’),nl,
write(’But there is probably nothing wrong with the battery itself.’),nl.

explain(fuel_system) :-
nl,
write(’Check whether there is fuel in the tank.’),nl,
write(’If so, check for a clogged fuel line or filter’),nl,
write(’or a defective fuel pump.’),nl.

explain(ignition_system) :-
nl:
write(’Check the spark plugs, cables, distributor,’),nl,
write(’coil, and other parts of the ignition system.’),nl,
write(’If any of these are visibly defective or lomg’),nl,
write(’overdue for replacement, replace them; if this’),nl,
write(’does not solve the problem, consult a mechanic.’),nl.

% End of CAR.PL

Figure 2.7 (Continued).

59

Chapter 3

Data Structures and Computation

3.1. ARITHMETIC

Here are some examples of how to do arithmetic in Prolog:

- Y is 2+2.
Y=24
yes

7~ 5 is 3+3.
no

?- Z is 4.5 + (3.9 / 2.1).
Z = 6.3571428
yes

The built-in predicate is takes an arithmetic expression on its right, evaluates it, and
unifies the result with its argument on the left. Expressions in Prolog look very much
like those in any other programming language; consult your manual and Table 3.1
(p. 62) for details." The simplest expression consists of just a number; you can say

?- What is 2.

!Older versions of Arity Prolog, and possibly some other Prologs, do not let you write an infix
operator immediately before a left parenthesis. You have to write 4.5 + (3.8/2.1) (with spaces), not
4.8+(3.9/2.1).

61

62 Data Structures and Computation Chap. 3

TABLE 3.1 FUNCTORS THAT CAN BE USED IN EVALUABLE EXPRESSIONS.

(Many implementations include others. Pre-ISO versions of Quintus Prolog lack sqrt(),
log(), exp(), and £loox (); see note on p. 66.)

+ Addition

- Subtraction

* Multiplication

/ Floating-point division
/! Integer division

mod Modulo

Infix operators

Functions abs() Absolute value
sqrt() Square root
log() Logarithm, base e
exp() Antilogarithm, base e
floor() Largestinteger < argument

if you want to, but it’s a needlessly roundabout way to do a simple thing.

The precedence of operators is about the same as in other programming lan-
guages: - is performed first, then * and /, and finally + and -. Where precedences
are equal, operations are performed from left to right. Thus, 4+3+2+5 is equivalent
to (4+(3%2))+5.

Prolog supports both integers and floating-point numbers, and interconverts
them as needed. Floating-point numbers can be written in E format (e.g., 3.45E-6
for 3.45 x 10~°).

Notice that Prolog is not an equation solver. That is, Prolog does not solve for
unknowns on the right side of is:

?- 6 is 2 + What. % wrong!
instantiation error

Beginners are sometimes surprised to find that Prolog can solve for the unknown
in father(michael,Who) but not in 5 is 2 + What. Think a moment about the
difference between the two cases. The query father (michael,Who) can be solved
by trying all the clauses that match it. The query 5 is 2 + What can’t be solved this
way because there are no clauses for is, and anyhow;, if you wanted to do arithmetic
by trying all the possible numbers, the search space would be infinite in several
dimensions.

The only way to solve 5 is 2 + What is to manipulate the equation in some
way, either algebraically (5 — 2 =What) or numerically (by doing a guided search
for the right value of What). This is particularly easy to do in Prolog because is can
accept an expression created at run time. We will explore numerical equation solving
in Chapter 7. The point to remember, for now, is that the ordinary Prolog search
strategy doesn’t work for arithmetic because there would be an infinite number of
numbers to try.

Sec. 3.2. Constructing Expressions 63

Exercise 3.1.1

Try out expressions containing each of the functors in Table 3.1. Do they all work in
your Prolog?

Exercise 3.1.2

Use Prolog to evaluate each of the following expressions. Indicate how you did so.
234 + (567.8 x 3} — 0.0001

5~ 6]

9° mod 12

Exercise 3.1.3

In your Prolog, what happens if you try to do arithmetic on an expression that contains
an uninstantiated variable? Does the query simply fail, or is there an error message?
Try it and see.

3.2. CONSTRUCTING EXPRESSIONS

A big difference between Prolog and other programming languages is that other
languages evaluate arithmetic expressions wherever they occur, but Prolog evaluates
them only in specific places. For example, 2+2 evaluates to 4 only when it is an
argument of the predicates in Table 3.2; the rest of the time, it is just a data structure
consisting of 2, +, and 2. Actually, that’s a feature, not a limitation; it allows us to
manipulate the expression as data before evaluating it, as we'll see in Chapter 7.
Make sure you distinguish clearly between:

¢ is, which takes an expression (on the right), evaluates it, and unifies the result
with its argument on the left;

e =:=, which evaluates two expressions and compares the results;

e =, which unifies two terms (which need not be expressions and, if expressions,
will not be evaluated).

Thus:

?- What is 2+3. % Evaluate 2+3, unify result with What
What = 5

?- 441 =:= 2+3. % Evaluate 4+1 and 2+3, compare results
yes

7- What = 2+3 % Unify What with the expressiom 2+3
What = 2+3

The other comparisons, <, >, =<, and >=, work just like =:= except that they
perform different tests. Notice that we write =< and >=, not => and <=. This is because
the latter two symbols look like arrows, and the designers of standard Prolog chose
to keep them undefined so that you could redefine them for other purposes.

64 Data Structures and Computation Chap. 3

TABLE 3.2 BUILT-IN PREDICATES THAT EVALUATE EXPRESSIONS

R is Expr Evaluates Expr and unifies result with R
Expri =:= Expr2 Succeeds if results of both expressions are equal
Exprl =\= Expr2 Succeeds if results of the expressions are not equal
Exprl > Expr2 Succeeds if Exprl > Expr2
Expri < Expr2 Succeeds if Exprl < Expr2
Exprl >= Expr2 Succeeds if Exprl > Expr2
Exprl =< Expr2 Succeeds if Exprl < Expr2

Note syntax: =< and >=, not <= and =>.

Notice also that the arithmetic comparison predicates require their arguments
to be fully instantiated. You cannot say “Give me a number less than 20” because
such a request would have an infinite number of possible answers.

Speaking of comparisions, another trap for the unwary, present in all program-
ming languages but easier to fall into in Prolog than in most, is the following:

A floating-point number obtained by computation is almost never truly equal to
any other floating-point number, even if the two look the same when printed out.

This is because computers do arithmetic in binary, but we write numbers in decimal
notation. Many decimal numbers, such as 0.1, have no binary equivalent with a finite
number of digits. (Expressing 1/10 in binary is like expressing 1/3 or 1/7 in decimal
— the digits to the right of the point repeat endlessly.) As a result, floating-point
calculations are subject to rounding error, and 0.1+ 0.1 does not evaluate to precisely
0.2. Some Prologs work around this problem by treating numbers as equal if they
are sufficiently close, even though their internal representations are different.

Exercise 3.2.1

Explain which of the following queries succeed, fail, or raise error conditions, and why:
?- 5 is 2+3.

?=- & =:= 243.

7= 5 = 2+3.

?- 4+1 is 2+3.

7= 4+1 =:= 5.

?7- What is 2+3.

?- What =:= 2+3.

?- What is 5.

?- What = 5.

Exercise 3.2.2

Try each of the following queries and explain the results you get:
?- 4 is sqrt(16).

?- 2.0E-1 is sqrt(4.0E-2).

?- 11.0 is sqr+(121.0).

?- 0.5 is 0.1 + 0.1 + 0.1 + 0.1 + 0.1.

?- 0.2 * 100 =:= 2 * 10.

Sec. 3.3. Practical Calculations 65

If you have the time and the inclination, try similar tests in other programming lan-
guages.

3.3. PRACTICAL CALCULATIONS

The alert reader will have surmised that when we use expressions in Prolog, we
are mixing styles of encoding knowledge. From a logical point of view, “sum” and
“product” are relations between numbers, just as “father” and “mother” are relations
between people. From a logical point of view, instead of

?- What is 2 + 3%4 + 5.
we should write
?- product(3,4,P), sum(2,P,S), sum(S,5,What). J Not standard Prolog!

and in fact that’s how some early Prologs did it. However, the older approach has
two problems: It's unwieldy, and it gives the impression that Prolog has a search
strategy for numbers, which it doesn’t. Thus, we use expressions instead.

If you want to implement numerical algorithms, you do have to define Prolog
predicates because there’s usually no way to define additional functions that can
appear within expressions. Thus, you have to revert to a purely logical style when
dealing with things you’ve defined for yourself.?

For example, let’s define a predicate close_enough/2 that succeeds if two
numbers are equal to within 0.0001. That will let us compare the results of floating-
point computations without being thrown off by rounding errors. Here’s how it’s
done:

close_enough(X,X) :—- !.

close_enough(X,¥) :- X < ¥,
Y-X < 0.0001.

close_enough(X,Y) :- X > ¥,
close_enough(Y,X).

The first clause takes care of the case where the two arguments, by some miracle,
really are equal. It also handles the case where one argument is uninstantiated, by
unifying it with the other argument. This enables us to use close_enough as a
complete substitute for = when working with floating-point numbers. The cut ("!”)
ensures that if clause 1 succeeds in a particular case, the other two clauses will never
be tried.

The second clause is the heart of the computation: compare X and Y, subtract
the smaller from the larger, and check whether the difference is less than 0.0001.

2Unless, of course, you want to write your own replacement for is, which can be well worth doing;
see Chapter 7.

66 Data Structures and Computation Chap. 3

The third clause deals with arguments in the opposite order; it simply swaps
them and calls close_enough again, causing the second clause to take effect the
second time. Notice that no loop is possible here.

Now let’s do some computation. The following predicate instantiates Y to the
real square root of X if it exists, or to the atom nonexistent if not:3

real square_root(X,nonexistent) :- X < 0.0.

real_square_root(X,Y) :- X >= 0.0,
Y is sqrt(X).

Some examples of its use:

?- real_square_root{(9.0,Root).
Root = 3.0
yes

?- real_square_root(-1.0,Root).
Root = nonexistent
yes

Notice, however, that the query real_square_root(121.0,11.0) will probably fail
because 11.0 does not exactly match the floating-point result computed by sqrt,
even though 121 = 11 exactly. We can remedy this by doing the comparison with
close_enough rather than letting the unifier do it directly. This requires redefining
real_square_root as follows:

real_square_root(X,nonexistent) :- ¥ < 0.0. % Clause 1

real_square_root(X,Y) :- X >= 0.0, % Clause 2
R is sqrt(X),
close_enough(R,Y).

Now we get the result we wanted:

7- real_square_root(121.0,11.0).
yes

Finally, let’s exploit Prolog’s ability to return alternative answers to the same
question. Every positive real number has fwo square roots, one positive and the
other negative. For example, the square roots of 1.21 are 1.1 and —1.1. We’d like
real_square_root to get both of them.

3Versions of Quintus Prolog and Cogent (Amzi) Prolog that predate the ISO standard do not let
you write sqrt(...) in expressions. In Cogent (Amzi) Prolog, for sqrt (X) simply write exp(1n(X)/2).
In Quintus, sqrt/2 is a Prolog predicate found in the math library, and to make real square root work,
you'll have to change it as follows:

(1) Add “:~ ensure loaded(library(math)).’ at the beginning of your program.
(2) Replace R is sqrt(X) with the goal sqrt (X,R).
(3) In clause 3, replace R is -sqrt(X) with the two goals sqrt(X,8), R is -S.

Sec. 3.4. Testing for instantiation 67

That’s easy to do, but we need separate clauses for the alternatives because the
arithmetic itself, in Prolog, is completely deterministic. All we have to add is the
following clause:

real_square_root(X,Y) :- X > 0.0, % Clause 3
R is ~sgrt(X),
close_enough(R,Y).

This gives an alternative way of finding a real square root. Now every call to
real_square_root with a positive first argument will return two answers on suc-
cessive tries:

?- real_square_root(9.0,Root).
Root = 3.0

Root -3.0

yes

Nondeterminism is a useful mathematical tool because many mathematical prob-
lems have multiple solutions that can be generated algorithmically. Even if the
mathematical computation is deterministic, Prolog lets you package the results so
that they come out as alternative solutions to the same query.
Exercise 3.3.1
Get close_enough and real_square_root working and verify that they work as de-
scribed.

Exercise 3.3.2

What guarantees that the recursion in close_enough will not continue endlessly?

Exercise 3.3.3
Modify close_enough so that it tests whether two numbers are equal to within 0.1%
(i.e., tests whether the difference between them is less than 0.1% of the larger number).
Exercise 3.3.4

What does real_square_root do if you ask for the square root of a negative number?
Why? Explain which clauses are tried and what happens in each.

3.4. TESTING FOR INSTANTIATION

So far, real_square_root still requires its first argument to be instantiated, but with
some minor changes we can even endow real_square_root with interchangeability
of unknowns. Using the two arguments X and Y, the strategy we want to follow is
this:

o If X is known, unify Y with v/X or —v/X (these are two alternative solutions).

o If Y is known, unify X with Y2.

68 Data Structures and Computation Chap. 3

To do this, we need a way to test whether X and Y are instantiated. Prolog provides
two predicates to do this: var, which succeeds if its argument is an uninstantiated
variable, and nonvar, which succeeds if its argument has a value. We can thus rewrite
real_square_root as follows:*

real_square_root(X,nonexistent) :- % Clause 1
nonvar(X),
X <0.0.

real square_root(X,Y) :- nonvar(X), % Clause 2
X >= 0.0,

R is sqrt(X),
close_enough(R,Y).

real_square_root(X,Y) :~ nonvar(X), % Clause 3
X>0.0,
R is -sqrt(X),
close_enough(R,Y).

real_square_root (X,Y) :- nonvar(Y), % Clause 4
Ysquared is Y=Y,
close_enough(Ysquared,X).

Here clause 4 provides a way to compute X from Y, and the use of nonvar through-
out ensures that the correct clause will be chosen and that we will not try to do
computations or comparisons on uninstantiated variables.

Now, however, there is some spurious nondeterminism. If both X and Y are
instantiated, then either clause 2 or clause 3 will succeed, and so will clause 4.
This may produce unwanted multiple results when a call to real_square_root is
embedded in a larger program. The spurious nondeterminism can be removed by
adding still more tests to ensure that only one clause succeeds in such a case.

Exercise 3.4.1
Demonstrate that the latest version of real_square_root works as described (i.e., that
it can solve for either argument given the other).

Exercise 3.4.2

Remove the spurious nondeterminism in real_square_root. That is, ensure that a
query such as real_square_root(1.21,1.1) succeeds only once and does not have an
alternative way of succeeding.

Exercise 3.4.3

Define the predicate sum(X,Y,2) such thatX + ¥ = 2. Give it the ability to solve for any
of its three arguments given the other two. You can assume that at least two arguments
will be instantiated.

“Quintus and Cogent (Amzi) Prolog users, see footnote 3 (page 66).

Sec. 3.5. Lists 69

Exercise 3.4.4

Implement a solver for Ohm’s Law in Prolog with full interchangeability of unknowns.
That is, define ohm(E, I,R) such thatE = I xR and such that any of the three arguments
will be found if the other two are given. You can assume that all arguments will be
nonzero.

3.5. LISTS

One of the most important Prolog data structures is the LIST. A list is an ordered .
sequence of zero or more terms written between square brackets and separated by
commas, thus:
[alpha,beta,gamma,delta]
(1,2,3,gol
[(2+2),in(austin,texas),-4.356,X]
[[a,list,within],a,list]
The elements of alist can be Prolog terms of any kind, including other lists. The empty
list is written [1. Note especially that the one-element list [a] is not equivalent to
the atom a.
Lists can be constructed or decomposed through unification. An entire list can,

of course, match a single variable:

Unify With Result

[a,b,c] X X=[a,b,c]

Also, not surprisingly, corresponding elements of two lists can be unified one by one:

Unify With Result

[x,v,z1 [a,b,c] ZX=a, Y=b, Z=c¢
[x,v,2] [a,Y,c] X=a, ¥Y=b, Z=c

This applies even to lists or structures embedded within lists:

Unify With Result

[[a,b],c] (x,Y] X=[{a,b]l, Y=c
[a(b),c(X)] [Z,c(a)] X=a, Z=a(b)

More importantly, any list can be divided into head and tail by the symbol ‘|”. (On
your keyboard, the character | may have a gap in the middle.) The head of a list is
the first element; the tail is a list of the remaining elements (and can be empty).

The tail of a list is always a list; the head of a list is an element.
Every nonempty list has a head and a tail. Thus,

[al[b,¢,d]] = [a,b,c¢,d]
{2al{11] = [a]

70 Data Structures and Computation Chap. 3

(The empty list, [1, cannot be divided into head and tail.)
The term [X1Y] unifies with any nonempty list, instantiating X to the head and
Y to the tail, thus:

Unify With Result
(xiYl [a,b,c,d] ZX=a, Y=[b,c,d]
Xiyl [al =a, Y=[]

So far, | is like the CAR-CDR distinction in Lisp, but unlike CAR and CDR, | can
pick off more than one initial element in a single step. Thus:

[a,b,cl[d,e,f]] = [a,b,c,d,e,f]

and this feature really proves its worth in unification, as follows:

Unify With Result

[x,ylz] [a,b,c] X=a, Y=b, Z=[c]
[X,Y!Z] [a,b,c,d] X=a, Y=b, Z=[c,d]
[X,Y,Z14] [a,b,c] X=a, Y=b, Z=¢, A=[]
(X,Y,2/4] [a,b] fails

[X,Y,a] [Z2,b,2] X=Z=a, Y=b

[x,Y12Z] falW] X=a, W=[Y!Z]

The work of constructing and decomposing lists is done mostly by unification, not
by procedures. This means that the heart of a list processing procedure is often in
the notation that describes the structure of the arguments.

To accustom ourselves to this notation, let’s define a simple list processing
predicate:

third_element([A,B,C|Rest],C).

This one succeeds if the first argument is a list and the second argument is the third
element of that list. It has complete interchangeability of unknowns, thus:

?- third_element([a,b,c,d,e,f],X).
I=c
yes

?- third element([a,b,Y,d,e,f],c).
Y=c¢
yes

?- third_element (X,a).
X = [_0001,_0002,al_0003}
yes

In the last of these, the computer knows nothing about X except that it is a list whose
third element is a. Therefore, it constructs a list with uninstantiated first and second
elements, followed by a and then an uninstantiated tail.

Sec. 3.6. Storing Data in Lists 71

Exercise 3.5.1

Define a predicate first_two_same that succeeds if its argument is a list whose first two
elements match (are unifiable), like this:

?- first_two_same([a,a,b,c]).

yes

?- first_two_same([a,X,b,c]). % here a can unify with X

i=a

yes

7- first_two_same([a,b,c,d]).

no

Exercise 3.5.2

Define a predicate swap.first._two which, given a list of any length > 2, constructs
another list like the first one but with the first two elements swapped:

?- swap_first_two([a,b,c,d],What).

What = [b,a,c,d]

Hint: The definition of swap_£first_two can consist of a single Prolog fact.

3.6. STORING DATA IN LISTS

Lists can contain data in much the same way as records in COBOL or Pascal. For
example,

[’Michael Covington’,

’285 Saint George Drive’,
?Athens’,

’Georgia’,

230606°]

is a reasonable way to represent an address, with fields for name, street, city, state,
and zip code. Procedures like third_element in the previous section can extract or
insert data into such a list.

One important difference between a list and a data record is that the number of
elements in a list need not be declared in advance. At any point in a program, a list
can be created with as many elements as available memory can accommodate. (If
the number of elements that you want to accommodate is fixed, you should consider
using not a list but a STRUCTURE, discussed in section 3.14.)

Another difference is that the elements of a list need not be of any particu-
lar type. Atoms, structures, and numbers can be used freely in any combination.
Moreover, a list can contain another list as one of its elements:

[’Michael Covington’®,
[[’B.4&*,1977],

[°M.Phil.*,1978],
[°Ph.D.>,1982]],

’Associate Research Scientist’?,
’University of Georgia’]

72 Data Structures and Computation Chap. 3

Here the main list has four elements: name, list of college degrees, current job title,
and current employer. The list of college degrees has three elements, each of which
is a two-element list of degree and date. Note that the number of college degrees per
person is not fixed; the same structure can accommodate a person with no degrees
or a person with a dozen.

This, of course, raises a wide range of issues in data representation. Recall the
contrast between “data-record style” and other uses of predicates that we pointed out
at the end of Chapter 1. The best representation of a database cannot be determined
without knowing what kind of queries it will most often be used to answer.

Lists in Prolog can do the work of arrays in other languages. For instance, a
matrix of numbers can be represented as a list of lists:

[f1,2,31,
[4,5,6],
[7,8,91]

There is, however, an important difference. In an array, any element can be accessed
as quickly as any other. In a list, the computer must always start at the beginning
and work its way along the list element by element. This is necessary because of the
way lists are stored in memory. Whereas an array occupies a sequence of contiguous
locations, a list can be discontinuous. Each element of a list is accompanied by a
pointer to the location of the next element, and the entire list can be located only by
following the whole chain of pointers. We will return to this point in Chapter 7.

Exercise 3.6.1

Define a predicate display_degrees that will take a list such as
[’Michael Covington’,
[[’B.A?,1977],
[°M.Phil.’,1978],
[’Pn.D.’,1982]1,
’Associate Research Scientist’,
'University of Georgia’]
and will write out only the list of degrees (i.e., the second element of the main list).

3.7. RECURSION

To fully exploit the power of lists, we need a way to work with list elements without
specifying their positions in advance. To do this, we need repetitive procedures that
will work their way along a list, searching for a particular element or performing
some operation on every element encountered.

Repetition is expressed in Prolog by using RECURSION, a program structure in
which a procedure calls itself. The idea is that, in order to solve a problem, we will
perform some action and then solve a smaller problem of the same type using the
same procedure. The process terminates when the problem becomes so small that
the procedure can solve it in one step without calling itself again.

Let’s define a predicate member (X,Y) that succeeds if X is an element of the
list Y. We do not know in advance how long Y is, so we can’t try a finite set of

Sec. 3.7. Recursion 73

predetermined positions. We need to keep going until we either find X or run out of
elements to examine.

Before thinking about how to perform the repetition, let’s identify two special
cases that aren’t repetitive.

o If Y is empty, fail with no further action (because nothing is a member of the
empty list).

e If X is the first element of ¥, succeed with no further action (because we’ve
found it).

We will deal with the first special case by making sure that, in all of our clauses, the
second argument is something that will not unify with an empty list. An empty list
has no tail, so we can rule out empty lists by letting the second argument be a list
that has both a head and a tail.

We can express the second special case as a simple clause:’

member (X, [X]_]). % Clause 1
Now for the recursive part. Think about this carefully to see why it works:
X is a member of Y if X is a member of the tail of Y.
This is expressed in Prolog as follows:
member (X, [_[¥taill) :- member(X,Ytail). % Clause 2
Let’s try an example.
7- member (c, [a,b,c]).
This does not match clause 1, so proceed to clause 2. This clause generates the new
query
?- member(c, [b,e]).

We're making progress — we have transformed our original problem into a smaller
problem of the same kind. Again, clause 1 does not match, but clause 2 does, and
we get a new query:

7~ member(c, [c]).

Now we're very close indeed. Remember that [c] is equivalent to [c|[]1]. This
time, clause 1 works and the query succeeds.

If we had asked for an element that wasn't there, clause 2 would have applied
one more time, generating a query with an empty list as the second argument. Since
an empty list has no tail, that query would match neither clause 1 nor clause 2, so it
would fail — exactly the desired result.

This process of trimming away list elements from the beginning is often called
“CDRing down” the list. (CDR, pronounced “could-er,” is the name of the Lisp func-
tion that retrieves the tail of a list; it originally stood for “contents of the decrement
register.”)

SIf member is a built-in predicate in the implementation of Prolog that you are using, give your
version of it a different name, such as men.

74 Data Structures and Computation Chap. 3

Exercise 3.7.1

Describe exactly what happens, step by step, when the computer solves each of these
queries:

?- member(c, [a,b,c,d,e]).
?- member(q, [a,b,c,d,e]).

Exercise 3.7.2

What does each of the following queries do?

?- member (What, [a,b,c,d,e]).
?- member (a,What).

How many solutions does each of them have?

Exercise 3.7.3
What does each of the following predicates do? Try them on the computer (with various
lists as arguments) before jumping to conclusions. Explain the results.

test1(List) :- member(X,List), write(X), nl, fail.
testi1().

test2([First|Rest]) :- write(First), nl, test2(Rest).
test2([]).

3.8. COUNTING LIST ELEMENTS

Here is a recursive algorithm to count the elements of a list:
e If the list is empty, it has 0 elements.

o Otherwise, skip over the first element, count the number of elements remaining,
and add 1.

The second of these clauses is recursive because, in order to count the elements of a
list, you have to count the elements of another, smaller list. The algorithm expressed
in Prolog is the following:®

list_length([],0).

list_length([_{Taill,K) :- list_length(Tail,J),
K is J+1.

The recursion terminates because the list eventually becomes empty as elements
are removed one by one. The order in which the computations are done is shown
as follows. (Variable names are marked with subscripts to show that variables in
different invocations of the clause are not identical.)

We call it 1ist_length because there is already a built-in predicate called length that does the
same thing.

Sec. 3.9. Concatenating (Appending) Lists 75

7- list_length([a,b,c],Kp).
?- list.length([b,cl,K;).
7- list_length([c],K7).
?- list.length([],0).

?- K> is 0+1.
7- K; is 1+1.
?- Ky is 2+1.

This recursive procedure calls itself in the middle: shorten the list, find the length of
the shorter list, and then add 1. Work similar examples by hand until you are at ease
with this kind of program execution.

Exercise 3.8.1
Define a predicate count_occurrences (X,L,N) that instantiates N to the number of times
that element X occurs in list L:
?- count_occurrences(a,[a,b,r,a,c,a,d,a,b,r,al,What).

What = 5
?- count_occurrences(a,[n,o,t,h,e,r,e],What).
What = 0

Start by describing the recursive algorithm in English. Consider three cases: the list is
empty, the first element matches what you are looking for, or the first element does not
match what you are looking for.

Exercise 3.8.2

Define a predicate last_element (L,E) that instantiates E to the last element of lList L,
like this:

?- last_element([a,b,c,d],What).

What = d

3.9. CONCATENATING (APPENDING) LISTS

What if we want to concatenate (APPEND) one list to another? We’d like to combine
[a,b,c] with [d,e,f] to get [a,b,c,d,e,f].

Notice that | will not do the job for us; [[a,b,c]l[d,e,f]] is equivalent to
[[a,b,c],d,e,£], which is not what we want. We’ll have to work through the first
list element by element, adding the elements one by one to the second list.

First, let’s deal with the limiting case. Since we’ll be shortening the first list,
it will eventually become empty, and to append an empty list to the beginning of
another list, you don’t have to do anything. So:

append([],X,X). % Clause 1
The recursive clause is less intuitive, but very concise:

append([X1/X2],Y,[X1{Z]) :- append(X2,Y,2). % Clause 2

76 Data Structures and Computation Chap. 3

Describing clause 2 declaratively: The first element of the result is the same as the
first element of the first list. The tail of the result is obtained by concatenating the
tail of the first list with the whole second list.”

Let’s express this more procedurally. To concatenate two lists:

1. Pick off the head of the first list (call it X1).

2. Recursively concatenate the tail of the first list with the whole second list. Call
the result Z.

3. Add X1 to the beginning of Z.

Note that the value of X1 from step 1 is held somewhere while the recursive compu-
tation (step 2) is going on, and then retrieved in step 3. The place where it is held is
called the RECURSION STACK.

Note also that the Prolog syntax matches the declarative rather than the pro-
cedural English description just given. From the procedural point of view, the term
[X11X2] in the argument list represents the first step of the computation — decom-
posing an already instantiated list — while the term [X112] in the same argument
list represents the last step in the whole procedure, putting a list together after Z has
been instantiated.

Because of its essentially declarative nature, append enjoys complete inter-
changeability of unknowns:

7- append([a,b,c],[d,e,f],X).
X = [a,b,c,d,e,f]
yes

?- append([a,b,c],X,[a,b,c,d,e,f]).
X = [d,e,f]
yes

?- append(X,[d,e,f], [a,b,c,d,e,f]).
X = [a,b,c]
yes

Each of these is deterministic; there is only one possible solution. However, if we
leave the first two arguments uninstantiated, we get, as alternative solutions, all of
the ways of splitting the last argument into two sublists:

?- append(X,Y,[a,b,c,d]).
I=[] Y=[a,b,c,d]
X=fa] Y=[b,c,d]
X=[a,b] 7Y=[c,d]
X=[a,b,c] Y=[d]
X=[a,b,c,d] Y=[]

7Like membez, apperd is a built-in predicate in some implementations. If you are using such an
implementation, use a different name for your predicate, such as app.

Sec. 3.10. Reversing a List Recursively 77

This can be useful for solving problems that involve dividing groups of objects into
two sets.

Exercise 3.9.1

What is the result of this query?

?- append([J,b,X1,[d,L,£], [a,M,c,N,e,P1).
Exercise 3.9.2

Define a predicate append3 that concatenates three lists and has complete interchange-
ability of unknowns. You can refer to append in its definition.

Exercise 3.9.3

Write a procedure called £latten that takes a list whose elements may be either atoms
or lists (with any degree of embedding) and returns a list of all the atoms contained in
the original list, thus:

7- flatten([[a,b,c],[d,[e,£],g],hl,X).

X = [a,b,c,d,e,f,g,h]

Make sure your procedure does not generate spurious alternatives upon backtracking.
(What you do with empty lists in the input is up to you; you can assume that there will
be none.)

3.10. REVERSING A LIST RECURSIVELY

Here is a classic recursive algorithm for reversing the order of elements in a list:
1. Split the original list into head and tail.
2. Recursively reverse the tail of the original list.
3. Make a list whose only element is the head of the original list.
4. Concatenate the reversed tail of the original list with the list created in step 3.

Since the list gets shorter every time, the limiting case is an empty list, which we
want to simply return unchanged. In Prolog:®

reverse([1,[1). Y% Clause 1

reverse{[Head|Taill ,Result) :- % Clause 2
reverse(Tail,ReversedTail),
append (ReversedTail, [Head] ,Result).

This is a translation of the classic Lisp list-reversal algorithm, known as “naive
reversal” or NREV and frequently used to test the speed of Lisp and Prolog imple-
mentations. Its naiveté consists in its great inefficiency. You might think that an

8 Again, reverse may be a built-in predicate in your implementation. If so, name your predicate
Trov.

78 Data Structures and Computation Chap. 3

eight-element list could be reversed in eight or nine steps. With this algorithm, how-
ever, reversal of an eight-element list takes 45 steps — 9 calls to reverse followed by
36 calls to append.

One thing to be said in favor of this algorithm is that it enjoys interchangeability
of unknowns — at least on the first solution to each query. If the first argument is
uninstantiated, the second argument is a list, and we ask for more than one solution,
a strange thing happens. Recall that in order to solve

?7- reverse(X,[a,b,c]).
the computer must solve the subgoal
?7- reverse(Tail,ReversedTail).

where [Head|Taill=X but neither Tail nor ReversedTail is instantiated. The com-
puter first tries the first clause, instantiating both Tail and ReversedTail to [J.
This can’t be used in further computation, so the computer backtracks, tries the
next clause, and eventually generates a list of uninstantiated variables of the proper
length. So far so good; computation can then continue, and the correct answer is
produced. When the user asks for an alternative solution, Prolog tries a yet longer
list of uninstantiated variables, and then a longer one, ad infinitum. The computa-
tion backtracks endlessly until it generates a list so long that it uses up all available
memory.

Exercise 3.10.1

By inserting some writes and nls, get reverse to display the arguments of each call
to itself and each call to append. Then try the query reverse (What, [a,b,c]), ask for
alternative solutions, and watch what happens. Show your modified version of reverse
and its output.

Exercise 3.10.2 (for students with mathematical background)
Devise a formula that predicts how many procedure calls are made by reverse as a
function of the length of the list.

Exercise 3.10.3

Why is NREV not a good algorithm for testing Prolog implementations?
Hint: Consider what Prolog is designed for.

3.11. A FASTER WAY TO REVERSE LISTS

Here is an algorithm that reverses a list much more quickly but lacks interchange-
ability of unknowns.

fast_reverse(Original,Result) :-
nonvar (Original),
fast_reverse_aux(Original, [],Result).

Sec. 3.12. Character Strings 79

fast_reverse_aux([Head|Tail],Stack,Result) :-
fast_reverse_aux(Tail, [Head{Stack] ,Result).

fast_reverse_aux([],Result,Result).

The first clause checks that the original list is indeed instantiated, then calls a three-
argument procedure named fast_reverse_aux. The idea is to move elements one
by one, picking them off the beginning of the original list and adding them to a new
list that serves as a stack. The new list, of course, becomes a backward copy of the
original list. Through all of the recursive calls, Result is uninstantiated; at the end,
we instantiate it and pass it back to the calling procedure. Thus:

?~ fast_reverse_aux([a,b,c],[],Result).
7- fast_reverse_aux([b,c], [a]l,Result).
?- fast_reverse_aux([c], [b,al,Result).
?- fast_reverse_aux([], [c,b,al, [c,b,al).

This algorithm reverses an n-element list in n + 1 steps.

We included nonvar in the first clause to make fast_reverse fail if its first
argument is uninstantiated. Without this, an uninstantiated first argument would
send the computer into an endless computation, constructing longer and longer lists
of uninstantiated variables, none of which leads to a solution.

Exercise 3.11.1
Demonstrate that fast_reverse works as described. Modify it to print out the argu-
ments of each recursive call so that you can see what it is doing.

Exercise 3.11.2

Compare the speed of reverse and fast_reverse in reversing a long list.

Hint: On a microcomputer, you will have to do this with stopwatch in hand. On UNIX
systems, the Prolog built-in predicate statistics will tell you how much CPU time
and memory the Prolog system has used.

3.12. CHARACTER STRINGS

There are three ways to represent a string of characters in Prolog:

e Asan atom. Atoms are compact but hard to take apart or manipulate.

¢ Asalist of ASCII codes. You can then use standard list processing techniques
on them.

e As a list of one-character atoms. Again, you can use standard list processing
techniques.

In Prolog, if you write a string with double quotes ("1like this"), the computer
interprets it as a list of ASCII codes. Thus, "abc" and [97,98,99] are exactly the
same Prolog term. Such lists of ASCII codes are traditionally called STRINGS.?

InISO Prolog, to ensure that strings are interpreted in the way described here, add the declaration
“:~ set_prolog.flag(double_quotes,codes).” at the beginning of your program.

80 Data Structures and Computation Chap. 3

An immediate problem is that there is no standard way to output a character
string, since write and display both print the list of numbers:

?- write("abc").
[97,98,99]
yes

We will define a string input routine presently and refine it in Chapter 5, but here is
a simple string output procedure:

write_str([Head|Taill) :- put(Head), write_str(Tail).
write_str([]).

The recursion is easy to follow. If the string is nonempty (and thus will match
[Head|Taill), print the first item and repeat the procedure for the remaining items.
When the string becomes empty, succeed with no further action.

Strings are lists, in every sense of the word, and all list processing techniques
can be used on them. Thus reverse will reverse a string, append will concatenate or
split strings, and so forth.

Exercise 3.12.1

Define a Prolog predicate print_splits which, when given a string, will print out all
possible ways of dividing the string in two, like this:
?- print_splits("university").

university

u niversity

un iversity

uni versity

univ ersity

unive rsity

univer sity

univers ity

universi ty

universit y

university

yes

Feel free to define and call other predicates as needed.

Exercise 3.12.2

Define a predicate ends_in_s that succeeds if its argument is a string whose last element
is the character s (or, more generally, a list whose last element is the ASCII code for s),
like this:

?- ends_in_s("Xerxes").

yes

?- ends_in_s("Xenophon").

no

?- ends_in_s([an,o0dd,example,115]). % 115 is code for s

yes

Hint: This can be done in two ways: using append or using the algorithm of Exercise
3.8.2.

Sec. 3.13. Inputting a Line as a String or Atom a1
3.13. INPUTTING A LINE AS A STRING OR ATOM

It’s easy to make Prolog read a whole line of input into a single string without caring
whether the input follows Prolog syntax. The idea is to avoid using read, and instead
use get0 to input characters until the end of the line is reached.'® It turns out that the
algorithm requires one character of LOOKAHEAD — it can’t decide what to do with
each character until it knows whether the next character marks the end of the line.
Here’s how it’s done:

% read_str(String)
% Accepts a whole line of imput as a string (list of ASCII codes).
% Assumes that the keyboard is buffered.

read_str(String) :- getO(Char),
read_str_aux(Char,String).

read_str_aux(-1,[]) :- !. % end of file

read_str_aux(10,[]) :- !. % end of line (UNIX)
read_str_aux(13,[]) :- !. % end of line (DOS)
read_str_aux (Char, [Char|Rest]) :- read_str(Rest).

Notice that this predicate begins with a brief comment describing it. From now on
such comments will be our standard practice.

The lookahead is achieved by reading one character and then passing that
character to read_str_aux, which makes a decision and then finishes inputting the
line. Specifically:

e If Char is 10 or 13 {(end of line) or —1 (end of file), don’t input anything else; the
rest of the string is empty.

e Otherwise, put Char at the beginning of the string, and recursively input the
rest of it the same way.

The cuts in read_str_aux ensure that if any of the first three clauses succeeds, the
last clause will never be iried. We'll explain cuts more fully in Chapter 4. Their
purpose here is to keep the last clause from matching unsuitable values of Char.

Note that read_str assumes that keyboard input is buffered. If the keyboard
is unbuffered, read_str will still work, but if the user hits Backspace while typing,
the Backspace key will not “untype” the previous key — instead, the Backspace
character will appear in the string.!!

We often want to read a whole line of input, not as a string, but as an atom.
That's easy, too, because the built-in predicate name/2 interconverts strings and
atoms:

10Recall that in ISO Prolog, get0 is called get_code.
In Arity Prolog, which uses unbuffered input, you can define read.str this way:
read_str(String) :- read.line(0,Text), list.text(String,Text).
This relies on two built-in Arity Prolog predicates. There is also a built-in predicate read_string, which
reads a fixed number of characters.

82 Data Structures and Computation Chap. 3

?- name (abc,What) .
What = [97,98,99] % equivalent to “abc"®

?- name (What,"abc").
What = abce

?- name(What,"Hello there").
What = ’Hello there’
yes

?- name(What, [97,98]).
What = ab

(Remember that a string is a list of numbers, nothing more, nothing less. The Prolog
system neither knows nor cares whether you have typed "abc" or [97,98,99].) An
easy way to read lines as atoms is this:

% read_atom(Atom)
% Accepts a whole line of input as a single atom.

read_atom(Atom) :- read_str(String), name (Atom,String).

Implementations differ as to what name does when the string can be interpreted as
a number (such as "3.1416"). In some implementations, name would give you the
number 3.1416, and in others, the atom °3.1416°. That’s one reason name isn’t in
the ISO standard. In its place are two predicates, atom_codes and number_codes,
which produce atoms and numbers respectively. Alongside them are two more
predicates, atom_chars and number_chars, which use lists of one-character atoms
instead of strings.’> We will deal with input of numbers in Chapter 5.

Exercise 3.13.1
Get read_str and read_atom working on your computer and verify that they function
as described.

Exercise 3.13.2
In your Prolog, does ‘?- name (What, "3.1416") .’ produce a number or an atom? State
how you found out.

Exercise 3.13.3
Based on read_str, define a predicate read_charlist that produces a list of one-
character atoms [1,1,k,e,’ ’,t,h,i,s] instead of a string.

Exercise 3.13.4

Modify read_str to skip blanks in its input. Call the new version read_str_no_blanks.
It should work like this:

12Pre-ISO versions of Quintus Prolog have atom chars and number_chars, but they produce
strings, not character lists; that is, they have the behavior prescribed for atom_codes and number_codes
respectively.

Sec. 3.14. Structures 83

?=- read_str_mo_blanks(X).

a bc d (typed by user)

X = [97,98,99,100] ¥ equivalent to "abed"

Do not use get; instead, read each character with get0 and skip it if it is a blank.

3.14. STRUCTURES

Many Prolog terms consist of a functor followed by zero or more terms as arguments:

a(b,c)

alpha([beta,gamma] ,X)

’this and’(that)
f(g,h,i,j,k,1,m,n,0,p,q,r,s,t,u,v)

i_have_no_arguments

Terms of this form are called STRUCTURES. The functor is always an atom, but the
arguments can be terms of any type whatever. A structure with no arguments is
simply an atom.

So far we have used structures in facts, rules, queries, and arithmetic expres-
sions. Structures are also data items in their own right; alongside lists, they are useful
for representing complex data. For example:

person(name(’Michael Covington’),
gender(male),
birthplace(city(’Valdosta’),
state(’Georgia’)))

sentence (noun_phrase (determiner (the),
noun(cat)),
verb_phrase (verb(chased),
noun_phrase (determiner (the),
noun(dog))))

Structures work much like lists, although they are stored differently (and more
compactly) in memory. The structure a(b,c) contains the same information as the
list [a,b,¢]. In fact, the two are interconvertible by the predicate ‘=. .’ (pronounced
“univ” after its name in Marseilles Prolog):

?- a(b,c,d) =.. X.
X = [a,b,c,d]

yes

?- X =.. [w,x,y,2].
X = w(x,y,2)

yes

84 Data Structures and Computation Chap. 3

?- alpha =.,. X.
X = [alpha]
yes

Notice that the left-hand argument is always a structure, while the right-hand argu-
ment is always a list whose first element is an atom.

One important difference is that a list is decomposable into head and tail, while
a structure is not. A structure will unify with another structure that has the same
functor and the same number of arguments. Of course, the whole structure will also
unify with a single variable:

Unify With Result

a(b,c) X X=a(b,c)

a(b,c) a(X,Y) X=b, Y=c

a(b,c) a(X) fails

a(b,c) a(X,Y,z) fails
In addition to =.. Prolog provides two other built-in predicates for decomposing
structures:

 functor(S,F,A) unifies F and & with the functor and arity, respectively, of
structure S. Recall that the arity of a structure is its number of arguments.

¢ arg(N,S,X) unifies X with the Nth argument of structure 8.
For example:

7~ functor(a(b,c),X,Y).
X=a
Y= 2

?- arg(2,a(b,c,d,e),What).
What = ¢

These are considerably faster than =. . because they don’t have to construct a list.

Do not confuse Prolog functors with functions in other programming languages.
A Pascal or FORTRAN function always stands for an operation to be performed on
its arguments. A Prolog functor is not an operation but merely the head of a data
structure.

Exercise 3.14.1

Using what you know about list processing, construct a predicate reverse_args that
takes any structure and reverses the order of its arguments:

?~ reverse_args(a(b,c,d,e),What).
What = a(e,d,c,b)

Exercise 3.14.2

Which arguments of functor have to be instantiated in order for it to work? Try various
combinations and see.

Sec. 3.16. Constructing Goals at Runtime 85

Exercise 3.14.3
Construct a predicate last_arg(S,4) that unifies A with the last argument of structure
S, like this:
?- last_arg(a(b,c,d,e,f),What).
What = £

Use functor and arg.

3.15. THE “OCCURS CHECK”

You can create bizarre, loopy structures by unifying a variable with a structure or list
that contains that variable. Such structures contain pointers to themselves, and they
lead to endless loops when the print routine, or anything else, tries to traverse them.
For example:

7- X = £(X).
= fEEEEEECEEEEETEEEEEEEEEETEEESEE(E. ..

?- X = [a,b,X]
X = [a,b,[2,b,[a,b,[a,b,[a,b,[2,b,[a,b,[a,bla,b,[a,bla,b,[a,b...

- £(X) = £(£(X)
= flEfEEEEfEEEETEEEEEEEEEEEEEEEEEEC .

The ISO standard includes a predicate, unify _with_occurs_check, that checks
whether one term contains the other before attempting unification, and fails if so:

7- unify_with_occurs_check(X,£(X)).
no.

?- unify_with_occurs_check(X,f(a)).
X = f(2

Our experience has been that the occurs check is rarely needed in practical Prolog
programs, but it is something you should be aware of.

Exercise 3.15.1

Which of the following queries creates a loopy structure?
?- I=Y, Y=X.

?- X=£(1), Y=X.

7- I=£(Y), Y=£(X).

?- X=£(Y), Y=£(2), Z=a.

3.16. CONSTRUCTING GOALS AT RUNTIME

Because Prolog queries are structures, you can treat them as data and construct them
as the program runs. The built-in predicate call executes its argument as a query.

86 Data Structures and Computation Chap. 3
Thus, call(write(’hello there’))is exactly equivalenttowrite (’hello there’).

The power of call comes from the fact that a goal can be created by computation
and then executed. For example:

answer_question :-
vwrite(’Mother or father? ’),
read_atom(X),
write(’0f whom? ?’),
read_atom(Y),
Q =.. [X,Who,Y] »
call(q),
write(Who),
nl.

If the user types mother and cathy, then Q becomes mother(Who,cathy). This is
then executed as a query and the value of Who is printed out. Thus (assuming the
knowledge base from FAMILY.PL):

7- answer_question.
Mother or father? father
0f whom? michael
charles_gordon

yes

?- answer_question.
Mother or father? mother
0f whom? melody

eleanor

yes

We can make this slightly more convenient by defining a predicate apply (similar to
APPLY in Lisp) that takes an atom and a list, constructs a query using the atom as
the functor and the list as the arguments, and then executes the query.

% apply{Functor,Arglist)
%4 Constructs and executes a query.

apply (Functor,Arglist) :-
Query =.. [Functor|Arglist],
call(Query).

The goal apply (mother, [Who ,melody]) has the same effect as mother (Who ;melody).
The arguments are given in a list because the number of them is unpredictable; the
list, containing an unspecified number of elements, is then a single argument of
apply. Prolog provides no way to define a predicate with an arbitrarily variable
number of arguments.

Many Prologs, including the ISO standard, let you omit the word call and
simply write a variable in place of a subgoal:

Sec. 3.17. Data Storage Strategies 87

apply (Functor,Arglist) :-
Query =.. [Functor|Arglist],
Query.

Exercise 3.16.1

Does your Prolog let you write a variable as a goal instead of using call?

Exercise 3.16.2

Get answer_question working (in combination with FAMILY.PL) and then modify
answer_question to use apply.

Exercise 3.16.3 (small project)

Define map (Functor,List,Result) (similar to MAPCAR in Lisp) as follows: Functor
is a 2-argument predicate, List is-a list of values to be used as the first argument of
that predicate, and Result is the list of corresponding values of the second argument.
For example, using the knowledge base of CAPITALS.PL, the following query should
succeed:

7- map(capital_of, [georgia,california,floridal,What).

What = [atlanta,sacramento,tallahassee]

3.17. DATA STORAGE STRATEGIES

There are three places you can store data in a Prolog program:

e In the instantiation of a variable. This is the least permanent way of storing
information, because a variable exists only within the clause that defines it.
Further, variables lose their values upon backtracking. That is, if a particular
subgoal instantiates a variable and execution then backs up past that subgoal,
the variable will revert to being uninstantiated.

o In arguments of predicates. The argument list is the only way a Prolog procedure
normally communicates with the outside world. (Input/output predicates
and predicates that modify the knowledge base are exceptions, of course.) By
passing arguments to itself when calling itself recursively, a procedure can
perform a repetitive process and save information from one repetition to the
next.

o In the knowledge base. This is the most permanent way of storing information.
Information placed in the knowledge base by asserta or assertz remains
there until explicitly retracted and is unaffected by backtracking.

A simple example of storing knowledge in the knowledge base is the predicate count
(Figure 3.1), which tells you how many times it has been called. (A call to such a
procedure might be inserted into another procedure in order to measure the number
of times a particular step is executed.) For example:

88 Data Structures and Computation Chap. 3

% count (X)
4 Unifies X with the number of times count/1 has been called.

count(X) :~ retract{count_aux(N)),
X is N+1,
asserta(count_aux(X)).

:= dynamic{(count_aux/1).

count_aux(0).

Figure 3.1 A predicate that tells you how many times it has been called.

7~ count (X).
X=1
yes

?- count (X).
X =2
yes

7~ count(X).
X=23
yes

Because count has to remember information from one call to the next, regardless of
backtracking or failure, it must store this information in the knowledge base using
assert and retract. There is no way the information could be passed from one
procedure to another through arguments, because there is no way to predict what
the path of execution will be.

In almost all Prologs, including the ISO standard, count is deterministic, but
in LPA Prolog, it is nondeterministic because LPA Prolog considers that performing
the assert creates a new alternative solution.

There are several reasons to use assert only as a last resort. One is that assert
usually takes more computer time than the ordinary passing of an argument. The
other is that programs that use assert are much harder to debug and prove correct
than programs that do not do so. The problem is that the flow of control in a
procedure can be altered when the program modifies itself. Thus, it is no longer
possible to determine how a predicate behaves by looking just at the definition of
that predicate; some other part of the program may contain an assert that modifies
it.

There are, however, legitimate uses for assert. One of them is to record the
results of computations that would take a lot of time and space to recompute. For
instance, a graph-searching algorithm might take a large number of steps to find
each path through the graph. As it does so, it can use assert to add the paths to

Sec. 3.18. Bibliographical Notes 89

the knowledge base so that if they are needed again, the computation need not be
repeated. Thus:

find_path(...) :- ...computation...,
asserta(find_path(...)).

Each time find_path computes a solution, it inserts into the knowledge base, ahead
of itself, a fact giving the solution that it found. Subsequent attempts to find the
same path will use the stored fact rather than performing the computation. Proce-
dures that “remember their own earlier results” in this way are sometimes called
MEMO PROCEDURES, and are much easier to create in Prolog than in other languages
(compare Abelson and Sussman 1985:218-219).

Another legitimate use of assert is to set up the controlling parameters of a
large and complex program, such as an expert system, which the user can use in
several modes. By performing appropriate asserts, the program can set itself up to
perform the function that the user wants in a particular session. For example, assert-
ing test_mode (yes) might cause a wide range of testing actions to be performed as
the program runs.

Exercise 3.17.1

Define a procedure gensym(X) (like GENSYM in Lisp) which generates a new atom
every time it is called. One possibility would be to have it work like this:

?- gensym(What).

What = a
?- gensym(What).
What = b

7- gensym(What).

What = z
?- gensym(What).
What = za

However, you are free to generate any series of Prolog atoms whatsoever, so long as
each atom is generated only once.

Exercise 3.17.2 (small project)

Use a memo procedure to test whether integers are prime numbers. Show that this
procedure gets more efficient the more it is used.

3.18. BIBLIOGRAPHICAL NOTES

Sterling and Shapiro (1994) give many useful algorithms for processing lists and
structures. Thereis little literature on arithmetic in Prolog, partly because Prolog has
little to contribute that is new and partly because the lack of language standardization
has severely hampered sharing of arithmetic routines. This situation should change
once the ISO standard is widely accepted.

Chapter 4

Expressing Procedural Algorithms

4.1. PROCEDURAL PROLOG

We have noted already that Prolog combines procedural and nonprocedural pro-
gramming techniques. This chapter will discuss Prolog from the procedural stand-
point. We will tell you how to express in Prolog algorithms that were originally
developed in other languages, as well as how to make your Prolog programs more
efficient.

Some purists may object that you should not program procedurally in Prolog
-— that the only proper Prolog is “pure” Prolog that ignores procedural considera-
tions. We disagree. Prolog was never meant to be a wholly nonprocedural language,
but rather a practical compromise between procedural and nonprocedural program-
ming. Colmerauer’s original idea was to implement not a general-purpose theorem
prover, but a streamlined, trimmed-down system that sacrificed some of the power
of classical logic in the interest of efficiency.

Any automated reasoning system consists of a system of logic plus a control
strategy that tells it what inferences to make when. Prolog’s control strategy is a
simple depth-first search of a tree that represents paths to solutions. This search is
partly under the programmer’s control: The clauses are tried in the specified order,
and the programmer can even specify that some potential solutions should not be
tried at all. This makes it possible to perform efficiently some types of computations
that would be severely inefficient, or even impossible, in a purely nonprocedural

language.

91

92 Expressing Procedural Algorithms Chap. 4

Exercise 4.1.1

How does Prolog arithmetic (Chapter 3) differ from what you would expect in a pro-
gramming language based purely on logic? Explain the practical reason(s) for the
difference(s).

4.2. CONDITIONAL EXECUTION

An important difference between Prolog and other programming languages is that
Prolog procedures can have multiple definitions (clauses), each applying under dif-
ferent conditions. In Prolog, conditional execution is normally expressed not with
if or case statements but with alternative definitions of procedures.

Consider, for example, how we might translate into Prolog the following Pascal
procedure:

procedure writename(X:integer); { Pascal, not Prolog }
begin
case X of
1: write(’Ome’);
2: write(’Two’);
3: write(’Three?)
end
end;

The Prolog translation has to give writename three definitions:

writename(1) :- write(’0One’).
writename(2) :- write(’Two’).
writename(3) :- write(’Three’).

Each definition matches in exactly one of the three cases. A common mistake is to
write the clauses as follows:

writename(X) :- X=1, write(’One’). % Inefficient!
writename (X) :- X=2, write(’Two’).
writename(X) :- X=3, write(’Three’).

This gives correct results but wastes time. Itis wasteful to start executing each clause,
perform a test that fails, and backtrack out, if the inapplicable clauses could have
been prevented from matching the goal in the first place.

A key to effective programming in Prolog is making each logical unit of the
program into a separate procedure. Each if or case statement should, in general,
become a procedure call so that decisions are made by the procedure-calling process.
For example, the Pascal procedure

Sec. 4.2. Conditional Execution 93

procedure a(X:integer); { Pascal, not Prolog }
begin

b;

if X=0 then ¢ else d;

e
end;

should go into Prolog like this:

a(X) :- b,
cd(X),
e.

cd(0) :- c.

cd(X) :- X<>0, d.
Crucially,

Every time there is a decision to be made, Prolog calls a procedure and makes the
decision by choosing the right clause.

In this respect, Prolog goes further than ordinary structured programming. A major
goal of structured programming is to make it easy for the programmer to visualize
the conditions under which any given statement will be executed. Thus, structured
languages such as Pascal restrict the use of goto statements and encourage the
programmer to use block structures such as if-then-else, while, and repeat, in
which the conditions of execution are stated explicitly. Still, these structures are
merely branches or exceptions embedded in a linear stream of instructions. In Prolog,
by contrast, the conditions of execution are the most visible part of the program.

Exercise 4.2.1

Define a predicate absval which, given a number, computes its absolute value:
7~ absval(0,What).
What = 0
?- absval(2.34,What).
‘What = 2.34
?- absval(-34.5,What).
What = 34.5
Do not use the built-in abs() function. Instead, test whether the number is negative,
and if so, multiply it by —1; otherwise return it unchanged.
Make sure absval is deterministic, i.e., does not have unwanted alternative solu-
tions. Do not use cuts.

Exercise 4.2.2

Define a predicate classify that takes one argument and prints odd, even, not an
integer, or not a number at all, like this:

?- classify(3).

odd

94 Expressing Procedural Algorithms ~ Chap. 4

?- classify(4).
aven

?- classify(2.5).
not an integer

?~ classify(this(and,that)).
not a number at all

Hint: You can find out whether a number is even by taking it modulo 2. For example,
13mod2=1but12mod2 = 0and —15mod 2 = —1.

Make sure that classify is deterministic. Do not use cuts.
4.3. THE “CUT” OPERATOR (!)

Consider another version of writename that includes a catchall clause to deal with
numbers whose names are not given. In Pascal, this can be expressed as:

procedure writename(X:integer); { Pascal, not Prolog }
begin
case X of

1: write(’One?);
2: write(’Two’);
3: write(’Three’)
else
write(’Out of ranmge’)
end
end;

Here is approximately the same algorithm in Prolog:

writename(1) :- write(’One’).

writename(2) :- write(’Two?).

writename(3) :- write(’Three’).
writename(X) :- X<1, write(’Out of range’).
writename(X) :- X>3, write(’Out of range’).

This gives correct results but lacks conciseness. In order to make sure that only one
clause can be executed with each number, we have had to test the value of X in both
of the last two clauses. We would like to tell the program to print “Out of range”
for any number that did not match any of the first three clauses, without performing
further tests. We could try to express this as follows, with some lack of success:

writename (1) :- write(’One’). % Wrong!
writename(2) :- write(’Two’).

writename(3) :- write(’Three’).

writename(_) :- write(’Qut of range’).

The problem here is that, for example, the goal

?- writename (1),

Sec.4.3. The “Cut” Operator {!) 95

matches both the first clause and the last clause. Thus it has two alternative solutions,
one that prints “One” and one that prints “Out of range.”

Unwanted alternatives are a common error in Prolog programs. Make sure your
procedures do the right thing, not only on thefirst try but also upon backtracking
for an alternative.

We want writename to be DETERMINISTIC, i.e., to give exactly one solution for any
given set of arguments, and not give alternative solutions upon backtracking. We
therefore need to specify that if any of the first three clauses succeeds, the computer
should not try the last clause. This can be done with the “cut” operator (written “!").

The cut operator makes the computer discard some alternatives (backtrack
points) that it would otherwise remember. Consider, for example, this knowledge
base:

b:~¢,d, !, e, f.
b :~ g, h.

and suppose that the current goal is b. We will start by taking the first clause.
Suppose further that ¢ and d succeed and the cut is executed. When this happens, it
becomes impossible to look for alternative solutions to ¢ and d (the goals that precede
the cut in the same clause) or to try the other clause for b (the goal that invoked the
clause containing the cut). We are committed to sticking with the path that led to the
cut. It remains possible to try alternatives for e and £ in the normal manner.

More precisely, at the moment the cut is executed, the computer forgets about any
alternatives that were discovered upon, or after, entering the current clause. Thus, the
cut “burns your bridges behind you” and commits you to the choice of a particular
solution.

The effect of a cut lasts only as long as the clause containing it is being executed.
To see how this works, add to the knowledge base the following clauses:

a :-p, b, q.
a :-r, b.

Leave b defined as shown above, and let the current goal be a. There are two clauses
for a. Take the first one, and assume that p succeeds, and then b succeeds using the
first of its clauses (with the cut), and then q fails. What can the computer do?

It can’t try an alternative for b because the cut has ensured that there are none.
It can, however, backirack all the way past b, outside the scope of the cut, and look
for alternatives for p and for a, which the cut didn't affect. When this is done, the
effect of the cut is forgotten (because that particular call to b is over), and if execution
reenters b, the search for solutions for b will start afresh.

We can make writename deterministic by putting a cut in each of the first three
clauses. This changes their meaning slightly, so that the first clause, for example,
says, “If the argument is 1, then write ‘One” and do not try any other clauses.”

writename(1) :- !, write(’One’).
writename(2) :— !, write(’Two’).
writename(3) :- !, write(’Three’).

writename(_) :- write(’Out of range’).

96 Expressing Procedural Algorithms ~ Chap. 4

Since write is deterministic, it does not matter whether the cut is written before or
after the call to write. The alternatives that get cut off are exactly the same. However,
programs are usually more readable if cuts are made as early as possible. That is:
Make the cut as soon as you have determined that the alternatives won't be needed.

Exercise 4.3.1

Make absval (from the previous section) more efficient by using one or more cuts. State
exactly what unwanted computation the cut(s) prevent(s).

Exercise 4.3.2

Make classity (from the previous section) more efficient by using one or more cuts.

Exercise 4.3.3

Consider a predicate my_cut defined as follows:
my_cut :- I,

Given the following knowledge base:

fact(1).

fact(2).

cuttestO(X) :- fact(X), !.

cuttesti(X) :- fact(X), my_cut.

What is printed by each of the following queries?
?- cuttest0(X), write(X), fail.

?- cuttest1(X), write(I), fail.

Explain why this happens. Why isn't my_cut equivalent to cut?

4.4. RED CUTS AND GREEN CUTS

A green cut makes a program more efficient without affecting the set of solutions that
the program generates; a red cut prevents the program from generating solutions it
would otherwise give. For example, let’s return to writename. In “pure” Prolog, the
definition is as follows:

writename(1l) :- write(’0Omne’).

writename(2) :- write(’Two’).

writename(3) :- write(’Thres’).
writename(X) :- X<1, write(’Out of range’).
writename(X) :- X>3, write(’Out of range’).

To this we can add some green cuts to eliminate backtracking:

writename(1l) :- !, write(’0One’).

writename(2) :- !, write(’Two’).

writename(3) :- !, write(’Three’).
vritename(X) :- I<1, !, write(’Out of range’).
writename(X) :- X>3, write(’0Out of range’).

Sec. 4.5. Where Not to Put Cuts 97

These cuts have no effect if only one solution is being sought. However, they ensure
that, if a later goal fails, no time will be wasted backtracking into this predicate to
look for another solution. The programmer knows that only one of these clauses will
succeed with any given value of X; the cuts enable him or her to communicate this
knowledge to the computer. (No cut is needed in the last clause because there are no
more alternatives after it.)

Red cuts can save time even when looking for the first solution:

writename(1) :- !, write(’One’).
writename(2) :- !, write(’Two’).
writename(3) :- !, write(’Three’).
writename(_) :- write(’Out of range’).

Here, we need never test explicitly whether X is out of range. If X =1, 2, or 3, one
of the first three clauses will execute a cut and execution will never get to the last
clause. Thus, we can assume that if the last clause executes, X must have been out
of range. These cuts are considered red because the same clauses without the cuts
would not be logically correct.

Use cuts cautiously. Bear in mind that the usual use of cuts is to make a specific
predicate deterministic. Resist the temptation to write an imprecise predicate and
then throw in cuts until it no longer gives solutions that you don’t want. Instead,
get the logic right, then add cuts if you must. “Make it correct before you make it
efficient” is a maxim that applies to Prolog at least as much as to any other computer

language.
Exercise 4.4.1

Classify as red or green the cuts that you added to absval and classify in the previous
section.

4.5. WHERE NOT TO PUT CUTS

In general, you should not put cuts within the scope of negation (\+), nor in a
variable goal, nor in a goal that is the argument of another predicate (such as call,
once, or setof — don't panic, you're not supposed to have seen all of these yet).

If you do, the results will vary depending on which implementation of Prolog
you're using. Appendices A and B tell the whole messy story. Suffice it to say that
the usual purpose of a cut is to prevent backiracking within and among the clauses
of a predicate. It's not surprising that if you put a cut in a goal that does not belong
to a specific clause, there’s little consensus as to what the cut should do.

Exercise 4.5.1

Does your Prolog allow cuts within the scope of negation? If so, does the cut work
like an ordinary cut or does it only prevent backtracking within the negated goals?
Experiment and see. You might want to base your experiment on a clause such as

£(X) - g(X), \+ (D), B,

where both g(X) and h(X) have multiple solutions.

93 Expressing Procedural Algorithms ~ Chap. 4
4.6. MAKING A GOAL DETERMINISTIC WITHOUT CUTS

The trouble with extensive use of cuts is that it can be difficult to figure out whether
all of the cuts are in the right places. Fortunately, there is another way to make
goals deterministic. Instead of creating deterministic predicates, you can define
nondeterministic predicates in the ordinary manner and then block backtracking
when you call them.

This is done with the special built-in predicate once/1, which is built into most
Prologs (including the ISO standard). If it’s not built into yours, you can define it as
follows:

once(Goal) :- call(Goal), !.

Then the query ‘?- once(Goal) . means “Find the first solution to Goal, but not any
alternatives.” For example (using FAMILY.PL from Chapter 2):

?- parent(Who,cathy).
Who = michael ;
Who = melody

?- once(parent (Who,cathy)).
Who = michael

No matter how many possible solutions there are to a goal such as £ (X), the goal
once (£ (X)) will return only the first solution. If £ (X) has no solutions, once (£ (X))
fails.

The argument of once can be a series of goals joined by commas. In such a case,
extra parentheses are necessary:

?- once((parent(X,cathy), parent(G,X))).

Of course, you can use once in predicate definitions. Here’s a highly hypothetical
example:

£(X) :- g(X), omce((h(X), i(X))), j(X).

Here once serves as a limited-scope cut (like Arity Prolog’s “snips”); it ensures that,
each time through, only the first solution of (h(X), i(X)) will be taken, although
backtracking is still permitted on everything else.

Use once sparingly. It is usually better to make your predicates deterministic,
where possible, than to make a deterministic call to a nondeterministic predicate.

Exercise 4.6.1

Rewrite absval and classify (from several previous sections) to use once instead of
cuts. Is this an improvement? (Not necessarily. Compare the old and new versions
carefully and say which you prefer. Substantial reorganization of the Prolog code may
be necessary.)

Sec. 4.8. Making a Goal Always Succeed or Always Fail 29
4.7. THE “IF-THEN-ELSE” STRUCTURE (->)

Another way to express deterministic choices in Prolog is to use the “if-then-else”
structure,

Goall -> Goal2 ; Goal3

This means “if Goall then Goal2 else Goal3,” or more precisely, “Test whether Goalil
succeeds, and if so, execute Goal2; otherwise execute Goal3.” For example:

writename(X) :- X = 1 -> write(one) ; write(’not ome?).
You can nest if-then-else structures, like this:

writename(X) :-~ (X=1 -> write(one)
: X ~-> write(two)
; X=3 => write(three)
; write(’out of range’)).

13
N

Thatis: “TryX = 1,thenX = 2,thenX = 3,until one of them succeeds; then execute
the goal after the arrow, and stop.” You can leave out the semicolon and the “else”
goal.

The if-then-else structure gives Prolog a way to make decisions without calling
procedures; this gives an obvious gain in efficiency. (Some compilers generate more
efficient code for if-then-else structures than for the same decisions expressed any
other way.) However, we have mixed feelings about if-then-else. To us, it looks
like an intrusion of ordinary structured programming into Prolog. It’s handy and
convenient, but it collides head-on with the idea that Prolog clauses are supposed to
be logical formulas.

We also have more substantial reasons for not using if-then-else in this book.
First, if-then-else is unnecessary; anything that can be expressed with it can be
expressed without it. Second, one of the major Prologs (Arity) still lacks the usual
if-then-else structure (although it has a different if-then-else of its own). Third, and
most seriously, Prolog implementors do not agree on what “if-then-else” structures
should do in all situations; see Appendix B for the details.

Exercise 4.7.1

Rewrite absval and ¢lassify (again!), this time using if-then-else structures.

4.8. MAKING A GOAL ALWAYS SUCCEED OR ALWAYS FAIL

In order to control the flow of program execution, it is sometimes necessary to
guarantee that a goal will succeed regardless of the results of the computation that
it performs. Occasionally, it may be necessary to guarantee that a goal will always
fail.

An easy way to make any procedure succeed is to add an additional clause to
it that succeeds with any arguments and is tried last, thus:

100 Expressing Procedural Algorithms Chap. 4

£(X,¥) :- X<Y, write(’X is less tham Y’), !.
£(_,.).

A call to £ succeeds with any arguments; it may or may not print its message, but
it will certainly not fail and hence will not cause backtracking in the procedure that
invoked it. Moreover, because of the cut, £ is deterministic, The cut prevents the
second clause from being used to generate a second solution with arguments that
have already succeeded with the first clause.

Another way to make a query succeed is to put it in disjunction with true,
which always succeeds:

?- (£(A,B) ; true).

(Recall that the semicolon means “or.”) If the original query doesn’t succeed, the call
to true certainly will. Better yet, wrap the whole thing in once so that it doesn’t give
two solutions when you're expecting only one:

?7- once((£(4,B) ; true)).

You can guarantee that any procedure will fail by adding !, fail at the end
of each of its definitions, thus:

g(X,¥) :- X<Y, write(’X less than Y’), !, fail.
g(X,¥) :- ¥Y<X, write(’Y less than X)), 1, fail.

Any call to g ultimately returns failure for either of two reasons: either it doesn’t
match any of the clauses, or it matches one of the clauses that ends with cut and fail.
The cut is written next to last so that it won’t be executed unless all the other steps of
the clause have succeeded; as a result, it is still possible to backtrack from one clause
of g to the other as long as the cut has not yet been reached.

You can define predicates make_succeed and make_fail that make any goal
succeed or fail, thus:

make_succeed(Goal) :- Goal, !.
make_succeed(_).

make_fail(Goal) :- call(Goal), !, fail.

Related to make_fail is the technique of making a rule fail conclusively. Think
back to GEO.PL, the geographical knowledge base in Chapter 1. Suppose we found
that, in practice, we were constantly getting queries from people wanting to know
whether Toronto is in the United States. Rather than letting the computer calculate
the answer each time, we might introduce, at the beginning of the knowledge base,
the rule:

located_in(toronto,usa) :- !, fail.

Now the query ‘?- located_in(toronto,usa).’ will hit this rule and fail immedi-
ately with no alternatives, thus saving computer time.
Finally, note that cut can be used to define not, thus:

Sec. 4.9. Repetition Through Backtracking 101

not (Goal) :- call(Goal), !, fail.
not(_).

Thatis: If a call to Goal succeeds, then reject alternatives and fail. Otherwise, succeed
regardless of what Goal is.

Exercise 4.8.1

Rewrite writename so thatinstead of printing “out of range” it succeeds without printing
anything if its argument is not 1, 2, or 3. Make sure it is still deterministic.

Exercise 4.8.2

Using only two clauses, and not using \+, define a deterministic predicate non_integer
that fails if its argument is an integer but succeeds if its argument is anything else
whatsoever. (Hint: Use !, fail.’)

4.9. REPETITION THROUGH BACKTRACKING

Prolog offers two ways to perform computations repetitively: backtracking and
recursion. Of the two, recursion is by far the more versatile. However, there are
some interesting uses for backtracking, among them the construction of repeat
loops. In Prolog implementations that lack tail recursion optimization (see below),
repeat-fail looping is the only kind of iteration that can be performed ad infinitum
without causing a stack overflow.

The built-in predicate repeat always succeeds and has an infinite number of
solutions. If execution backtracks to a repeat, it can always go forward again. For
example, here’s how to print an infinite number of asterisks:

7- repeat, write(’*’), fail.

Here’s a procedure that turns the computer into a typewriter, accepting characters
from the keyboard ad infinitum until the user hits the break key to abort the program:

typewriter :- repeat, % unreliable!
get0(C),
fail.

The loop can be made to terminate by allowing it to succeed eventually, so that
backtracking stops. The following version of typewriter stops when the user presses

Return (ASCII code 13):
typevriter :- repeat, % unreliable!
get0(C),
¢ = 13.

1We assume that the computer displays each character as it is typed. If your Prolog doesn’t do this,
add put (C) after get0(C). Remember that in ISO Prolog, get0 and put are called get_code and put._cods
respectively.

102 Expressing Procedural Algorithms Chap. 4

If C is equal to 13, execution terminates; otherwise, execution backtracks to repeat
and proceeds forward again through get0(¢). (Note that in some Prologs you should
test for code 10, not 13.)

Even with this change, the looping in typewriter can be restarted by the failure
of a subsequent goal, as in the compound query

7~ typewriter, write(’Got it’), fail.

Try it. To prevent the loop from restarting unexpectedly, we need to add a cut as
follows:

typewriter :- repeat,
get0(C),
C = 13, % 10 under UNIX

In effect, this forbids looking for alternative solutions to anything in typewriter
once one solution has succeeded. To sum up:

Every repeat loop begins with a repeat goal and ends with a test that fails,
followed by a cut.

Note that repeat loops in Prolog are quite different from repeat loops in Pascal.
The biggest difference is that in Pascal, the loop always starts over and over from
the beginning, whereas in Prolog, backtracking can take you to any subgoal that
has an untried alternative — which need not be repeat. Moreover, if any goal in
a Prolog loop fails, backtracking takes place immediately; subsequent goals are not
attempted.

A serious limitation of repeat loops is that there is no convenient way to pass
information from one iteration to the next. Prolog variables lose their values upon
backtracking. Thus, there is no easy way to make a repeat loop accumulate a count
or total. (Information can be preserved by storing it in the knowledge base, using
assert and retract, but this process is usually inefficient and always logically
inelegant.) With recursion, information can be transmitted from one pass to the
next through the argument list. This is the main reason for preferring recursion as a
looping mechanism.

Exercise 4.9.1

Modify typewriter so that it will stop whenever it gets code 10 or code 13.

Exercise 4.9.2

Using repsat, define a predicate skip_until_blank thatreads characters from standard
input, one by one, until it gets either a blank or an end-of-line mark. Demonstrate that
it works correctly. If you are using the keyboard for input, note the effect of buffering.

Exercise 4.9.3

Using repeat, ses, read, and assertz, write your own version of consult. That is,
define a predicate which, when given a file name, will read terms from that file and
assert them into the knowledge base. (This can be extremely handy if you want to
preprocess the terms in some way before asserting them.)

Sec. 4.10. Recursion 103
4.10. RECURSION

Most programmers are familiar with recursion as a way to implement task-within-
a-task algorithms such as tree searching and Quicksort. Indeed, Prolog lends itself
well to expressing recursive algorithms developed in Lisp. What is not widely
appreciated is that any iterative algorithm can be expressed recursively.

Suppose for example we want to print a table of the integers 1 to 5 and their
squares, like this:

O s

6
25

G W=

This is obviously a job for a loop. We could describe the computation in Pascal as:

for i:=1 to 5 do { Pascal, not Prolog }
writeln(i,’ °,i*i)

or, breaking the for loop down into simpler components,

ii=1;
while not(i>5) do
begin
writeln(i,’ ?,i%xi);
i:=i+1
end;

but the same computation can also be described recursively. Let’s first describe the
recursive algorithm in English:

To print squares beginning with I:

e If I > 5, do nothing.

s Otherwise, print I and I?, then print squares beginning with 7 + 1.
In Pascal this works out to the following:

procedure PrintSquares(i:integer); { Pascal, not Prolog }
begin
if not(i>5) then
begin
writeln(i,’ *,i*i);
PrintSquares(i+1)
end
end;

The procedure prints one line of the table, then invokes itself to print the next. Here
is how it looks in Prolog:

104 Expressing Procedural Algorithms ~ Chap. 4
print_squares(I) :- I > B, I,

print_squares(I) :-
S is I*I,
write(I), write(’> ?), write(S), nl,
NewI is I+1,
print_squares(NewI).

We then start the computation with the query:
?- print_squares(1).

Notice that there is no loop variable. In fact, in Prolog, it is impossible to change the
value of a variable once it is instantiated, so there is no way to make a single variable
I take on the values 1, 2, 3, 4, and 5 in succession. Instead, the information is passed
from one recursive invocation of the procedure to the next in the argument list.

Exercise 4.10.1

Define a predicate print_stars which, given an integer as an argument, prints that
number of asterisks:

?- print_stars(40).
e 2 29 o o 3k 3 K ok 3 ok 3 3k 3k 2k 3k ok 2k 2k 2k 3k ok 2k 3 ok 3 3K 2Kk ok 2k 3K ok e ok k3 Kk

yes
Hint: Consider carefully whether you should count up or count down.

4.11. MORE ABOUT RECURSIVE LOOPS

Let’s take another example. Here is the classic recursive definition of the factorial
function:

e The factorial of O is 1.
¢ The factorial of any larger integer N is N times the factorial of N — 1.

or, in Pascal:

function factorial(N:integer):integer; { Pascal, not Prolog }
begin
if N=0 then
factorial:=1
else
factorial:=N*factorial (N-1);
end;

Finally, here’s how it looks in Prolog:

Sec. 4.11. More about Recursive Loops 105
factorial(0,1) :- t.

factorial (N,FactN) :-~
N >0,
M is N-1,
factorial(M,FactM),
FactN is N*FactM.

This is straightforward; the procedure factorial calls itself to compute the factorial
of the next smaller integer, then uses the result to compute the factorial of the integer
that you originally asked for. The recursion stops when the number whose factorial
is to be computed is 0.

This definition is logically elegant. Mathematicians like it because it captures
a potentially infinite number of multiplications by distinguishing just two cases,
N =0and N > 0. In this respect, the recursive definition matches the logic of
an inductive proof: the first step establishes the starting point, and the second step
applies repeatedly to get from one instance to the next.

However, that is not the usual way to calculate factorials. Most programmers
would quite rightly use iteration rather than recursion: “Start with 1 and multiply
it by each integer in succession up to N.” Here, then, is an iterative algorithm to
compute factorials (in Pascal):

function factorial(N:integer):integer; { Pascal, not Prolog }
var I,J:integer;
begin
I:=0; { Initialize }
J:=1;
while I<N do
begin { Loop }
I:=I+1;
s=J*1
end;
factorial:=J ' { Return result }
end;

In Pascal, this procedure does not call itself. ‘Its Prolog counterpart is a procedure
that calls itself as its very last step — a procedure that is said to be TAIL RECURSIVE:

factorial (N,FactN) :- fact_iter(N,FactN,0,1).
fact_iter(N,FactN,N,FactN) :- !.

fact_iter(N,FactN,I,J) :-
I<N,
Newl is I+1,
NewJ is J*NewI,
fact_iter(N,Factl,NewI,NewJ).

106 Expressing Procedural Algorithms Chap. 4

Here the third and fourth arguments of fact_iter are state varigbles or accumulators
that pass values from one iteration to the next. State variables in Prolog correspond
to variables that change their values repeatedly in Pascal.

Let’s start by examining the recursive clause of fact_iter. This clause checks
that I is still less than N, computes new values for I and J, and finally calls itself with
the new arguments.

Because Prolog variables cannot change their values, the additional variables
NewI and NewJ have to be introduced. In Prolog (as in arithmetic, but not in most
programming languages), the statement

X is X+1 % wrong!

is never true. So NewI and NewJ contain the values that will replace I and J in the
next iteration.

The first clause of fact_iter servestoend the iteration when the state variables
reach their final values. A more Pascal-like but less efficient way of writing this clause
is:

fact_iter(N,FactN,I,J) :- I = N, FactN = J.

That is, if I is equal to N, then FactN (uninstantiated until now) should be given
the value of J. By writing this same clause more concisely, as we did above, we
make Prolog’s unification mechanism perform work that would require explicit
computational steps in other languages.

Most iterative algorithms can be expressed in Prolog by following this general
pattern. First transform other types of loops (e.g., for and repeat-until) into Pascal-
like while loops. Then break the computation into three stages: the initialization,
the loop itself, and any final computations needed to return a resuit.

Then express the loop as a tail recursive clause (like the second clause of
fact_iter) with the while-condition at the beginning. Place the final computations
in another nonrecursive clause of the same procedure that is set up so that it executes
only after the loop is finished.

Finally, hide the whole thing behind a front-end procedure (factorial in this
example) which is what the rest of the program actually calls. The front-end proce-
dure passes its arguments into the tail recursive procedure along with initial values
of the state variables.

Exercise 4.11.1

Define a recursive predicate sum(J,K,N) that instantiates N to the sum of the integers
from J to K inclusive:

?- sum(-1,1,What).

What = 0

7~ sum(1,3,What).

What = 6

?- sum(6,7,What).

What = 13

Exercise 4.11.2

Is your version of sum tail recursive? If not, modify it to make it so,

Sec. 4.12. Organizing Recursive Code 107

Exercise 4.11.3

The Fibonacci series is the series of numbers obtained by starting with (1, 1) and forming
each subsequent member by adding the previous two: (1,1,2,3,5,8,13,21...). The
following procedure computes the Nth Fibonacci number in an elegant but inefficient
way:
£ib(1,1) :- L.
£ib(2,1) :- t.
fib(N,F) :- N>2,

Ni is N-1, f£ib(Ni,F1),

N2 is N-2, fib(N2,F2),

F is F1+F2.
Explain what is inefficient about this. Then write a more efficient procedure (named
£ib2) that uses state variables to remember the previous two Fibonacci numbers when
computing each one.

Exercise 4.11.4

Are the cuts in £ib (previous exercise) red or green?

4.12. ORGANIZING RECURSIVE CODE

Many programmers report that recursive Prolog procedures are harder to write than
loops in conventional languages but, once written, are less likely to contain errors.
This may be because Prolog forces the programmer to think more clearly about how
the repetition is carried out.

The first step in defining a recursive predicate is to decide how many situations
have to be distinguished: always at least two (continue looping or stop looping),
and sometimes more. There will be a clause for each situation.

The second step is to focus on the loop itself. To know that a loop works
correctly is to know three things:

o that it starts in the correct state;
e that it finishes in the correct state;
e that it proceeds correctly from each state to the next.

For instance, a loop to print the integers from 1 to 100 must start at 1 (not 0 or 2);
must stop at 100 (not 99 or 101); and must, on each iteration, print the next integer
greater than the one previously printed.

If the loop is expressed as a recursive Prolog procedure, the state in which it
starts is determined by the arguments passed to it. Starting in the wrong state is
therefore unlikely.

A more important question is whether the loop terminates, and if so, when. It
can terminate in two ways: by successfully executing a nonrecursive clause, or by
failing in the recursive clause prior to the recursive call. The following procedure
can terminate either way:

108 Expressing Procedural Algorithms Chap. 4

£(81) :- 1.
£(X) :- X =< 100, NewX is X*X, f(NewX).

The idea is to start with a number and keep squaring it until either 81 or a number
greater than 100 is reached. If 81 is encountered, the query succeeds; if not, the
query fails, but in either case, the loop terminates, and the conditions under which
it terminates are obvious from the way the program is written.

Finally, make sure that each of the clauses that you've written will actually
execute in some situation. A common error is to have, say, three or four clauses, the
last of which is never executed.

Exercise 4.12.1

Define a predicate even_length that takes one argument, a list, and succeeds if that list
has an even number of elements. Do not use arithmetic; do the computation entirely by
picking off elements of the list two at a time.

Exercise 4.12.2

Define a predicate remove_duplicates(X,¥) that removes duplicated members from
list X giving list Y thus:
7- remove_duplicates({a,b,r,a,c,a,d,a,b,r,a],x).
X = [¢,d,b,r,a]
That is, only one occurrence of each element is to be preserved. (Whether to preserve
the first or the last occurrence is up to you.)

You can assume that the first argument is instantiated. Check that your procedure
does not generate spurious alternatives.

Exercise 4.12.3

Write a predicate that produces a list of the members that two other lists have in common,
thus:

?- members_in_common([a,b,c], [c,d,b],X).

X= [b,c]

Assume that the first two arguments are instantiated. The order of elements in the
computed list is not important.

Exercise 4.12.4

Define a predicatemy_square_root (X,Y) that unifies Y with the square root of X. Find the
square root by successive approximations based on the principle that if G is a reasonably
good guess for the square root of X, then (X/G + G)/2 is a better guess. Start with
G = 1, and stop when G no longer changes very much from one iteration to the next.

4.13. WHY TAIL RECURSION IS SPECIAL

Whenever one Prolog procedure calls another, the computer has to save, on a push-
down stack, information about what to do when the called procedure terminates.
Since the called procedure may either succeed or fail, the computer must keep track
of two things: the CONTINUATION, which tells how to continue with the current clause

Sec. 4.13. Why Tail Recursion is Special 109

after the called procedure succeeds, and the BACKTRACK POINTS, which indicate where
to look for alternatives if the current clause fails. Here’s an example:

a:-b, c.
a :- d.
- a.

When b is called, the computer must save information telling it to continue with c if
b succeeds and to try the second clause of a if b fails. In this case there is only one
backtrack point, but if b had been preceded by a subgoal that had more than one
solution, there would have been a backtrack point for that subgoal as well. The stack
space is released when the procedure terminates.

Since a recursive call places more information onto the stack without releasing
what was already there, it would seem that repeated recursion would lead inevitably
to stack overflow. However, almost all Prolog implementations recognize a special
case. If the continuation is empty and there are no backtrack points, nothing need
be placed on the stack; execution can simply jump to the called procedure without
storing any record of how to come back. This is called LAST-CALL OPTIMIZATION.

If the procedure is recursive, then instead of calling the same procedure again,
the computer simply places new values into its arguments and jumps back to the
beginning. In effect, this transforms recursion into iteration. We have now come
full circle: To make the logic clearer, we transformed iteration into recursion, and to
make the execution more efficient, the interpreter or compiler transforms it back into
iteration.

A procedure that calls itself with an empty continuation and no backtrack
points is described as TAIL RECURSIVE, and last-call optimization is sometimes called
TAIL-RECURSION OPTIMIZATION. For example, this procedure is tail recursive:

test1(N) :~ write(ll), nl, NewN is N+1, testi(NewN).

Its continuation is empty because the recursive call is the last subgoal in the clause.
There is no backtrack point because there are no other clauses for testl and no
alternative solutions to write(N), nl, or NewN is N+1. By contrast, the following
procedure is not tail recursive:

test2(N) :- write(N), nl, NewN is N+1, test2(NewN), nl.

Here the continuation is not empty; the second nl remains to be executed after the

recursive call succeeds.
Here is a clause that has an empty continuation but still has a backtrack point:

test3(N) :- write(N), nl, NewN is N+1, test3(NewN).
test3(N) :- N<O.

Every time the first clause calls itself, the computer has to remember that (on that
call) the second clause has not been tried yet. Accordingly, test3 is not tail recursive.

The fact that test3 has two clauses is not the point here. A procedure with
many clauses can be tail recursive as long as there are no clauses remaining to be
tried after the recursive call. If we rearrange the clauses of test3, we get a perfectly
good tail recursive procedure:

110 Expressing Procedural Algorithms ~ Chap. 4

test3a(N) :- N<O.
test3a(N) :- write(N), nl, NewN is N+1, test3a(NewN).

Nor does a one-clause procedure always lack backtrack points. The following
procedure is not tail recursive because of untried alternatives within the clause:

test4(N) :- write(N), nl, m(N,NewN), test4d(NewN).

m(N,NewN) :- N>=0, NewN is N+1i.
n{N,NewN) :- N<G, NewN is (-1)=N.

There is only one clause for test4, butm has two clauses, and only the first of them
has been tried when test4 first calls itself recursively. The computer must therefore
record, on the stack, the fact that another path of computation is possible. Never
mind that both clauses cannot succeed with any given number; when the recursive
call takes place, the second one has not even been tried.

A quick way to confirm that your Prolog system has tail recursion optimization
is to type in the clauses above and try the queries:

?- test1(0).
7~ test2(0).
?- test3(0).
?- test4(0).

If tail recursion optimization is taking place, test1 will run indefinitely, printing
ever-increasing integers until stopped by some external cause such as a numeric
overflow or a finger on the Break key. However, test2, test3, and test4 will run
out of stack space after a few thousand iterations. Use them to gauge your machine’s
In almost all implementations of Prolog, a procedure can become tail recursive
by executing a cut. Recall that a tail recursive procedure must have an empty contin-
uation and no backtrack points. The purpose of the cut is to discard backtrack points.
Accordingly, the following procedures test5 and test6 should be tail recursive:

test5(N) :- write(N), nl, NewN is N+1, !, testS(NewN).
test5(N) :- N<O.

test6(N) :- write(N), nl, m(N,NewN), !, test6(NewN).

Except for the cuts, these predicates are identical to test3 and test4. (Recall that m
was defined earlier.)

Finally, notice that tail recursion can be indirect. Unneeded stack space is freed
whenever one procedure calls another with an empty continuation and no backtrack
points, whether or not the call is recursive. That’s why tail-recursion optimization is
also called last-call optimization, although naturally it is of little practical importance
except in tail recursive procedures. Thus, the following procedure is tail recursive:

test7(N) :- write(N), nl, test7a(N).
test7a(N) :- NewN is N+1, test7(NewN).

Sec. 4.14. Indexing 111

Each procedure calls the other without placing anything on the stack. The result is a
recursive loop spread across more than one procedure.

Exercise 4.13.1

(Not recommended for multiuser computers.) Test tail recursion on your machine. How
many iterations of test2 can you execute without running out of stack space? How
about test3?

Exercise 4.13.2

Rework £ib2 (from Exercise 4.11.3, p. 107) to make it tail recursive. (If your version of
£ib2 is already tail recursive, say so.)

4.14. INDEXING

When a Prolog system executes a query, it doesn’t have to search the entire knowledge
base for a matching clause. All Prologs use INDEXING (a hashing function or lookup
table) to go directly to the right predicate. For example, with FAMILY.PL, a query to
mother/2 does not search the clauses for father/2.

Most modern Prologs use indexing to go further than that. They index, not
only on the predicate and arity, but also on the principal functor of the first argument.
For example, if you have the knowledge base

a(b).
a(c).

d(e).
a(£).

then the query ‘7- d(£).” not only won't search the clauses for a/1, it also won't
look at d(e). It goes straight to d(£), which is the only clause whose predicate, arity,
and first argument match those in the query.

Indexing can speed up queries tremendously. It can also make predicates tail
recursive when they otherwise wouldn’t be. Here’s an example:

test8(0) :- write(’Still going’), mnl, test8(0).
test8(-1).

The query "?- test8(0) .’ executes tail recursively because indexing always takes it
right to the first clause, and the second clause is never even considered (and hence
does not generate a backtrack point). Notice that:

o Indexing looks at the principal functor of the first arqument (or the whole first
argument if the first argument is a constant).

e First-argument indexing can distinguish [] from a nonempty list, but cannot
distinguish one nonempty list from another.

112 Expressing Procedural Algorithms Chap. 4

e First-argument indexing works only when the first arguments of all the clauses,
and also of the query, are instantiated (or at least have instantiated principal
functors).

Indexing does not predict whether clauses will succeed. Nor does it necessarily
predict whether the entire unification process, including the inner parts of lists
and structures, can be carried out. Its only purpose is to rule out some obvious
mismatches without wasting too much time.

To take advantage of indexing, you should design your predicates so that the first
argument is the one that is most often used to select the right clause.

That means that, commonly, you will organize Prolog predicates so that the first
argument contains the known information, and the subsequent arguments contain
information to be looked up or computed. Of course, this is not a hard and fast rule;
if it were, Prolog wouldn’t be nearly as versatile as it is.

Consider now the familiar list concatenation procedure:

append([Head|Tail],X, [Head|¥]) :- append(Tail,X,Y).
append ([],X,X).

This procedure is tail recursive in Prolog even though its Lisp counterpart is not.
It is easy to make the mistake of thinking that the Prolog procedure works in the
following non-tail-recursive way:

(Misinterpreted algorithm:)
1. Split the first list into Head and Tail.
2. Recursively append Tail to X giving Y.
3. Join Head to Y giving the answer.
This is, after all, how the corresponding procedure would work in Lisp:

(DEFUN APPEND (LIST1 LIST2)
(IF (NULL LIST1)
LIST2
(CONS (CAR LIST1) (APPEND (CDR LIST1) LIST2))))

Thatis: if LIST1 is empty, then return LIST2; otherwise join the first element of LIST1
with the result of appending the tail of LIST1 to LIST2. The joining operation (the
CONS) is performed after returning from the recursive call; hence the recursive call is
not the last step, and the procedure is not tail recursive in Lisp.

The catch is that in Prolog, the joining of Head to Y does not have to wait until
the list Y has been constructed. Rather, the procedure operates as follows:

e Split the first list into Head and Tail; unify the second list with X; and create a
third list whose head is Head and whose tail is ¥, an uninstantiated variable.

e Recursively append Tail to X, instantiating Y to the result.

Sec. 4.15. Modularity, Name Conflicts, and Stubs 113

Internally, the third list is created with its tail pointing to a memory location where
the rest of the list will be constructed; the recursive call then builds the rest of the list
there. The ability to use uninstantiated variables in this way distinguishes Prolog
from other list processing languages.

Exercise 4.14.1

In FAMILY.PL, which of the following queries executes faster?
?- father(Who,michael).
7~ father(charles_gordon,Who).

You will probably not be able to measure the difference; give your answer based on
what you know about indexing.

Exercise 4.14.2

Would append (as shown in this section) be tail recursive in a Prolog system that did not
have first-argument indexing? Explain.

Exercise 4.14.3

Based on what you now know, take £latten (from exercise 3.9.3, P- 77) and make it tail
recursive. (This is not easy; if you're stuck, make it as close to tail recursive as possible.)

4.15. MODULARITY, NAME CONFLICTS, AND STUBS

As far as possible, programs in any language should be MODULAR. This means that
the program is broken up into sections that interact in clearly specified ways. In order
to find out what a section of the program does, you need only look at that section
and, perhaps, some other sections to which it refers explicitly. Many programmers
discovered modularity when they moved from BASIC to Pascal and learned to write
small, isolable procedures instead of creating a vast expanse of sequential statements.

Prolog facilitates modular programming because it has no global variables. A
variable has a value only as long as a particular clause is being executed; clauses com-
municate with each other through arguments. If there are no asserts or retracts,
the behavior of any predicate is predictable from its definition and the definitions of
the predicates it calls. This makes it possible to break Prolog programs up into sec-
tions for execution on separate CPUs ~ a major motive behind the choice of Prolog
for the Fifth Generation Project.

Predicate names, however, are global. You cannot have two separate predicates
named £, with the same arity, in different parts of the same program. This presents
a problem when parts of a large program are written by different programmers. If
youwant to call a predicate £, how can you be sure that no one else is using the name
£ for one of his predicates somewhere else?

Some Prologs, including the ISO standard, let you divide a program into “mod-
ules.” Predicates defined in one module cannot be called from other modules unless
you “export” them. Thus, you can have two predicates called £ that do not conflict
because there is no place from which they can both be called.

114 Expressing Procedural Algorithms ~ Chap. 4

Our solution in this book is much simpler. If we are defining a procedure
named £ that will be embedded in larger programs, we will use names such as
f_aux, f_start, and the like for any other predicates that are needed to make £
complete. In this way, the programmer using £ need not look at the names of all the
predicates defined in the £ package; he or she need only refrain from using predicate
names that begin with “£_".

Prolog also facilitates top-down design. A program can be designed by writing
the main procedure first, then filling in the other procedures that it will call. The
interchangeability of facts and rules makes it easy to write STUBS, or substitutes, for
procedures that are to be written later.

Suppose for example that the main body of the program requires a predicate
permute(Listl,List2) that succeeds if List2 is a permutation of Listi. The fol-
lowing quick-and-dirty stub works with lists of three or fewer elements:

permute (X,X) .

permute([4,B], [B,A]).

permute ([4,B,C], [A,C,B]).

permute([4,B,C],[B,4,C]).

permute ([A,B,C], [B,C,A]).

permute ([A,B,C], [C,4,B]).

permute([A,B,C], [C,B,A]).

permute([A,B,C,D|Rest], [A,B,C,D|Rest]) :- write(’List too long!’).

A more general definition of permute can be substituted later without any other
change to the program. In a similar way, Prolog facts with canned data can substitute
for procedures that will be written later to obtain or compute the real data.

Exercise 4.15.1

Suppose you needed append but didn’t have it. Write a stub for append that works for
lists of up to 3 elements (giving a concatenated list up to 6 elements long).

Does writing the stub help you recognize the recursive pattern that would have
to be incorporated into the real append predicate?

Exercise 4.15.2

Does your Prolog have a module system? Check the manuals and Appendix A. If so,
describe it briefly.

4.16. HOW TO DOCUMENT PROLOG PREDICATES

In the remainder of this book, we will document all Prolog predicates by putting a
comment at the beginning of each, in the format illustrated in Figure 4.1. Notice that:

e The first line gives descriptive names to the arguments and says whether or
not they are instantiated, as follows:

+ denotes an argument that should already be instantiated when this pred-
icate is called;

Sec. 4.16. How to Document Prolog Predicates

7 writename (+Number)

% Writes "One", "Two", or “"Three" to describe Number.
% Fails if Number is mnot 1, 2, or 3.

writename(1l) :- write(’One’).

writename(2) :- write(’Two’).
writename(3) :- write(’Three’).

% writeq_string(+String)
% Given a list of ASCII codes, writes the
% corresponding characters in quotes.

writeq_string(String) :-
write(’"’), write_string aux(String), write(’"?).

writeq_string_ aux([First|Restl) :-
put (First), write_string aux(Rest).

writeq_string_aux([]).

% square(+X%,-S)

% Given I, computes X squared.
square(X,S) :-

S is X*X.

% append(?List1,?List2,?List3)
% Succeeds if Listl and List2, concatenated, make List3.

append ([Head | Taill,X, [Head|¥]) :- append(Tail,X,Y).

append ({],X,X).

Figure 4.1 Examples of comments in the prescribed format.

115

116 Expressing Procedural Algorithms ~ Chap. 4

- denotes an argument that is normally not instantiated until this predicate
instantiates it;

? denotes an argument that may or may not be instantiated.

Some programmers use @ to denote arguments that contain variables which
must not become instantiated.

» The next two lines describe, in English, what the predicate does. This descrip-
tion is as concise as possible.

¢ Then comes the predicate definition itself, followed by any auxiliary predicates
that it uses internally.

Note that +, -, and ? (and @, if you use it) describe how the predicate is normally
meant to be called; we don’t guarantee that it will go wrong if called with the wrong
set of instantiations (but we don’t guarantee that it will go right, either).

Exercise 4.16.1
Add comments, in the prescribed format, to mother and father in FAMILY.PL.

Exercise 4.16.2

Add comments, in the prescribed format, to your latest versions of absval and £latten
(from previous exercises).

Exercise 4.16.3

Add a comment, in the prescribed format, to the following predicate (which should be
familiar from Chapter 3):
fast_reverse(DOriginal,Result) :-

nonvar (Original),

fast_reverse_aux(0Original, [],Result).
fast_reverse_aux([Head|Taill,Stack,Result) :-

fast_reverse_aux(Tail, [Head|Stack],Result).
fast_reverse_aux([],Result,Result).

Is fast_reverse_aux tail recursive?

4.17. SUPPLEMENT: SOME HAND COMPUTATIONS

Skip this section if you are having no trouble visualizing how Prolog solves a query.
However, if recursively defined predicates occasionally leave you mystified, you will
probably find it helpful to work through the detailed examples presented here. Note
also that the debugger (described briefly in Chapter 1) can show you the exact steps
of any computation.

This material will also be useful if you are building a Prolog interpreter, since
it suggests a way to implement backtracking and cuts. Moreover, tracing Prolog
computations by hand is an excellent way to debug tricky code.

Sec. 4.17. Supplement: Some Hand Computations 117
4.17.1. Recursion

First let’s compute by hand the Prolog query
?- member(c, [a,b,c,X]).
Our definition of member has two clauses:

[11 member(X,[XI_]).
[2] member(X,[_|Y]) :- member(X,Y).

Our first goal is
(1) ?- member(c,[a,b,c,X]).

This does not match clause [11, but it matches the head of clause [2]. We must
remember that the variable X in clause [2] and the variable X in our goal (1) arereally
different variables. So we will begin by rewriting clause [2] so the variables not only
are different but also look different. Since we are matching goal (1) with clause [2],
we will attach the digit 1 to each of the variables in clause [2] to distinguish them.
This will also make it easier for us to remember at which step in our computation
this invocation of clause [2] occurred. Rewritten, clause {2] looks like this:

[2.1] member(X1,[_1Y1]) :- member(X1,Y¥1).

(By ‘[2.1]" we mean ‘the instance of clause [2] used in satisfying goal (1).") Now
the goal matches the head of [2.1] with the following unifications:

X1 =¢ = a ¥Yi = [b,c,X]

In what follows we will usually omit anonymous variables because their values are
not saved.

4.17.2. Saving Backtrack Points

Later we may be forced to backtrack and look for an alternative way to satisfy goal
(1). . If we do, we will need to know which clause to try next. We record this
information by setting a pointer in the knowledge base to show the last rule with
which (1) has been matched:?

[1] member(X,[X{_]).
[2] member(X,[_|Y]) :- member(X,Y). <-(1)

Recall that the unifications we just made apply to the body of [2.1] as well as to its
head. The body of [2.1], with these unifications in effect, becomes our new goal,

designated (2):

2Qur pointers are one step behind those that would actually be used in an implementation of
Prolog. Practical Prolog systems store pointers to the next clause that should be tried, rather than the
clause that has just been used. If the last clause that has just been used is the last clause of the predicate
(as in this case), no pointer is stored at all. That's the key to tail-recursion optimization.

118 Expressing Procedural Algorithms ~ Chap. 4

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c, [b,c¢,X]).

Goal (2) will not match clause [1] . It does match the head of clause [2] , which we
rewrite as

[2.2] member(X2,[_}Y2]) :- member(I2,Y2).

(This is another invocation of [2], distinct from [2.1].) To get the match, we must
unify some variables. We add these new instantiations to our previous set:

X1 =c¢ Y1
X2 = ¢ Y2

{b,c,X]
{c,x]

Next, we set the pointer for goal (2) at clause [2] so we can remember which clause
we used to satisfy (2).

(1] member(X,[X}_1).
[2] member(X,{_|Y]) :- member(X,¥). <~(1) <-(2)

We replace our current goal with the instantiated body of [2.2].

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c,[b,c,X]).
(3) 7- member(c,[c,X]).

Goal (3) matches clause [1], rewritten
[1.23] ﬁember(X3,[X3|_])a

when we unify X3 with ¢ and X with the anonymous variable:

X1 = ¢ Yi = [b,C,x]
12 = ¢ Y2 = [b,c,X]
X3 =

We set the pointer for (3):

[1] member(X,[X]_1). <-(3)
[2] member(X,{_|Y]) :~ member(X,Y). <-(1) <-(2)

and we replace goal (3) with the instantiated body of [1.3]. However, [1.3] has
no body, so we have no goals left to satisfy. Success! The original query, goal (1),
has been satisfied. Since the variable X in the original query was never instantiated,
Prolog prints something like X = _0021 as the solution to the query.

4.17.3. Backtracking

Suppose we ask Prolog to look for another solution. Then it will try to resatisfy (3).
Before trying to resatisfy goal (3), it must undo all the variable instantiations that
were established when it last satisfied (3). In particular, X3 loses its value and the
list of instantiations reverts to:

Sec. 4.17. Supplement: Some Hand Computations 119

[b,c.X]
[c,X]

We see that the pointer for (3) is pointing to clause [1], so we must now try a clause
subsequent to [1]. Goal (3) will match clause [2], rewritten

[2.3] member(X3,[_{Y3]) :- member(X3,Y3).

1 =c¢ Y1
X2 = ¢ Y2

New instantiations, moving the pointer for (3), and replacing the current goal with
the instantiated body of the rule just invoked gives us this situation:

X1 = ¢ Y1 = [b,e,X]
X2 = ¢ Y2 = [ch]
X3 = ¢ Y3 = [X]

(1] member(X,[X!_]).
[2] member(X,[_i{Y]) :- member(X,Y). <-(1) <-(2) <-(3)

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c,[b,c,X]).
(3) ?~ member(c, [c,X]).
(4) ?- membezx(c,[X]).

Now that we have the general idea, let’s move alittle faster. Matching (4) with
[1] rewritten

[1.4] member(X4,[X4]_]1).

produces

X1 = ¢ Y1 = [bﬁc’c]
X2 = ¢ Y2 = [c,X]
I3 =c¢ Y3 = [c]

X4 =X=c¢

[1] member(X,[X]_]). <-(4)
[2] member(X,[_|Y]) :- member(X,Y). <-(1) <-(2) <-(3)

We have no new goal since [1] is a fact. Prolog prints the solution X = c.
Again we ask for additional solutions. Prolog tries to resatisfy (4), first dein-
stantiating X4 and X. Now (4) will match [2], rewritten as

[2.4] member(X4,[_1Y4]) :- member(X4,Y4).

producing this situation:

1 =c¢ Y1 = [b,c,X]
X2 = ¢ Y2 = [c,X]
X3=c Y3 = [X]

X4 =c Y4 = []

X =

[1] member(X,[X!|_1).
2] member(X,[_IY]) :

member (X,Y). <-(1) <-(2) <-(3) <~(4)

120 Expressing Procedural Algorithms Chap. 4

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c,[b,c,X]).
(3) ?- member{c,[c,X]).
(4) ?- member(c,[X]).
(5) 7- member(c,[]).

Goal (5) fails since it will match neither [1] nor the head of [2]. There are no more
rules for (4) to match, so Prolog backs up and tries to resatisfy (3). After undoing
the appropriate instantiations, the situation is this:

T1
Y2

[b,c,X]
[c,X]

X1
X2

[H

[1] member(X,[X|[_]).
[2] member(X,[_|Y]) :

i

member (X,Y). <-(1) <-(2) <-(3)

There are no more rules for member, and there is nothing else that (3) can match, so
it's time to redo goal (2). Prolog deinstantiates X2 and Y2, producing:

Xt = ¢ Y1 = [b,c,X]

[1] member(X,[X|_]1).
[2] member(X,[_IY]) :- member(X,Y). <-(1) <-(2)

and tries to resatisfy (2). There are no more rules for (2) to try, so Prolog backs up
and tries to resatisfy (1) with the following situation:

No instantiations (all undore due to backtracking).

[1] member(X,[Xi_1).
[2] member(X,[_|Y]) :- member(X,Y). <-(1)

Now there are no more clauses for (1) to try, so there are no more alternatives. Prolog
has failed to find another solution for our query, so it prints no.

4.17.4. Cuts

Let’s compute the same query ‘?~ member (¢, [a,b,c,X])." again, but witha slightly
different definition of member:

[1] member(X,[X]_]) :- 1.
{2] member(X,[_1Y]) :- member(X,Y).

This example will show us how to do a hand computation where a cut is involved.
This computation will look exactly like our previous computation until the
following situation is reached:

#

[b,c,X]
[c,X]

i1 =¢ Y1
2 =¢ Y2

it

Sec. 4.17. Supplement: Some Hand Computations 121

[1] member(X, [X].]) :- !.
[2] member(X,[_1Y]) :- member(X,Y). <-(1) <-(2)

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c, [b,c,X]).
(3) ?- member(c,[c,X]).

Then (3) will match [1] to produce this situation:

X1 = ¢ Yi = [b,c,X]
X2 = ¢ Y2 = [c,X]
X3 =¢

[1] member(X,[X]|_]) :- !. <~(3)

[2] member(X,[_IY]) member (X,Y). <-(1) <-(2)
(1) ?- member(c,[a,b,c,X]).
(2) 7- member(c,[b,c,X]).
(3) ?- member(c, [c,X]).
4y ?- 1,

Now the current goalis a cut. Recall that the cut is supposed to prevent backtracking.
When we execute it, we promise that we will not try to resatisfy any previous goals
until we backtrack above the goal that introduced the cut into the computation. This
means that we must now mark some of the lines in our goal stack to indicate that
we cannot try to resatisfy them. The lines that we must mark comprise the current
line and all lines above it until we get to the line that introduced the cut into the
computation — in this case, line (3). We will use exclamation marks for markers.>

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c,([b,c,X]).
! (3) ?- member(c,[c,X]).
1 (4) 7= 1,

We have no more goals to satisfy, so our query has succeeded. The X in the topmost
goal was never instantiated, so Prolog prints out something like X = _0021 as a
solution to the query.

Suppose we ask for an alternative solution. Then we must backtrack. Lines
(3) and (4) are marked as not resatisfiable, so we try to resatisfy (2). The situation
is then:

Xl = C Yl [b,c’x]
2 = ¢ Y2 = [c,X]

[1] member(X,[X|_1) [
[2] member(X,[_1Y]) :- member(X,Y). <-(1) <-(2)

Note that we could get the same effect by moving <~(3) to the end of the last clause, which would
mean, in effect, that <-(3) would no longer be a backtrack point. That’s how a real Prolog interpreter
does it: All backtrack points introduced after entering goal 3 get discarded by the cut.

122 Expressing Procedural Aigorithms Chap. 4

(1) ?- member(c,[a,b,c,X]).
(2) ?- member(c,[b,c,X]).

There are no more clauses for (2) to match, so it fails and we backtrack to (1). The
pointer for (1) also drops off the bottom of the database, and our original query
fails.

The difference between this computation and the earlier one is that the cut in
clause [1] prevents us from finding the second solution. Instead of the two solutions
X = _0021andX = c that the first computation produced, this second computation
produces only the second of these results.

4.17.5. An Unexpected Loop

Let’s look at another example. The query
?- reverse(X, [a,b]).

will produce the resultX = [b,a]. If we ask for alternative solutions, a curious thing
happens: Computation continues until we interrupt it or until a message tells us that
Prolog has run out of memory.

What has gone wrong? We can determine the answer by doing a hand compu-
tation of our query. The relevant clauses in our knowledge base are

[1] reverse([1,[1).

(2] reverse([HIT],L) :~ reverse(T,X), append(X,[H],L).
(3] append([],X,X).

[4] append([H|T],L,[H|TT]) :- append(T,L,TT).

and our initial goal is
(1) ?- reverse(X,[a,b]).

This will match [2], producing the situation:

X = [H1IT1]
L1 = [a,b]
[1]

[2] <-(1)
[3]

[4]

(2) 7- reverse(T1,X1), append(X1,[H1],L1).

(For brevity, we are no longer listing the whole goal stack or the bodies of the clauses,
although if you are following along with pencil and paper, you may want to write
them in.)

Goal (2) consists of two goals joined by a comma. Our first task is therefore to
satisfy the first part of (2). This matches [2] producing:

Sec. 4.17. Supplement: Some Hand Computations 123

X = [H1][H2]T2]]

L1 = [a,b] T1 = [H2]T2] X1 = L2
[1]

2] <-(1) <-(2)

[3]

(4]

(3) 7- (reverse(T2,X2), append(X2,[H2],L2)), append(L2,[H1],[a,bl).

Notice that (3) is the result of replacing the first goal in (2) with the instantiated
body of [2]. The remainder of (2) is just recopied, becoming the final goal in (3).
Our current goal is now the first goal in (3), which matches [1] producing:

X = [H1|[H2]T2]] = [H1,H2]

L1 = [a,b] T1 = [H2]/[1] = [H2] X1 = L2
T2 = X2 = [].

[1]1 <-(3)

[2] <-(1) <-(2)

[3]

[4]

(4) 7- append([],[H2],L2), append(L2,[H1],[a,b]).

We have simplified the value of X in our list of instantiations. We will do this
without further comment in subsequent steps. Since [1] is a fact, the first goal in
(3) disappears, and (4) consists of the two remaining goals.

Now for the first goal in (4). This matches [3] producing the situation:

X = [H1,H2]
L1 = [a,b] T1
L2 = [H3] = [H2] T2

[H2] X1
0 H2

[H2]
H3

[1] <-(3)

[2] <-(1) <-(2)
[3] <-(4)

[4]

(5) ?- append([H2], [H1],[a,b]).

We lost a goal going from (4) to (5) because we matched the first goal in (4) with a
fact. The new current goal will not match [3] since [H2] will only match a list with
at least one member. So our current goal matches [4] to produce:

X = [H1,H2] = [H1,a]

L1 = [a,b] T1 = [H2] = [a] X1 = [H2] = [a]
L2 = [H2] = [a] T2 = [] H2 =H3 =H5 = a
LS = [H1] s = [] TTS = [b]

124 Expressing Procedural Aigorithms ~ Chap. 4

[11 <~-(3)
[2] <-(1) <-(2)
{31 <-(4)
[4] <-(5)

(6) 7~ append([], [H1],[b]l).

Goal (6) matches [3] with H1 = H6 = b. Since [3] is a fact, we have no goals left
and our query succeeds. The final situation is:

X = [A1,a] = [b,a]

L1 = [a,b] Ti = [a] X1 = [a]

L2 = [a] T2 = 1 H2 = H3 = H5 = a
L5 = [H1] = [b] 5 = [TTS = [b]

H6 = H1L = b

[1] <-(3)

[21 <~(1) <-(2)
[3] <~(4) <-(6)
[4] <-(&)

Notice that every variable has been instantiated to some constant or list of constants.
Prolog prints the solution, which comprises the instantiations for all variables occur-
ring in the original query ‘?- reverse(X, [a,b]).’ — namely X = [b,a].

What happens if we ask for another solution? We retry (6), first deinstantiating
H6. Goal (6) will not match [4] since [] has no first member. So the pointer for (6)
disappears and we retry (5) after deinstantiating H5, T5, L5, and TT5. The pointer is
at the bottom of the database, so there are no more clauses to try. Backtrack to (4),
moving the pointer for (4) down to [4]. The situation is then:

X = [H1][H2]] = (H1,H2]
L1 = [a,b] Ti = [H2|[]] = [H2] X1 =12
T2 = X2
[11 <-(3)

[2] <-(1) <-(2)

[3]

[4] <~(4)

Goal (4) doesn’t match [4], so (4) fails and we backtrack to (3). Goal (3) matches
[2] producing:

X = [H1|[82]T2]] = [H1,H2|T2] = [H1,H2|[H3|T3]] = [H1,H2,H3{T3]

L1 = [a,b]

T1 = [H2|T2] = [H2|[H3IT3]] = [H2,H3|T3]
X1 = L2

T2 = [H3|T3]

X2 = L3

Sec. 4.17. Supplement: Some Hand Computations 125

[1]
[2] <-(1) <-(2) <=(3)
[3]
[4]

(4) ?- reverse(T3,X3), append(X3,[H3],L3), append (X2, [H2] ,L2),
append (L2, [H1], [a,b]).

The current goal matches [1] giving us:

X = [H1,H2,H31T3] = (H1,H2,H3|[1] = [H1,H2,H3]

L1 = [a,b]

T1 = [H2,H3|T3] = [H2,H3![1] = [H2,H3]
X1 = L2

T2 = [H3|T3] = [H3|[]1] = [H3]
X2 = L3

T3 = []

X3 =[]

[1] <-(4)

[2] <-(1) <-(2) <-(3)

[3]

(4]

(8) 7- append([], [H3],L3), append(L3,[H2],L2), append(L2,[H1],[a,b]).
The current goal matches [3] giving us:

X = [H1,H2,H3]

L1 = [a,b] T1 = [H2,H3]

L2 = X1 T2 = [H3]

L3 = X2 = [H3] T3 =0 X3 = [1
[1] <-(4)

[2] <-(1) <~(2) <~(3)

[3] <~(5)

[4]

(6) ?- append([H3], [H2],L2), append(L2,[H1],[a,b]l).
The current goal matches [4] to give us:

X = [H1,H2,H6]

L1 = [a,b] T1 = [H2,H6]

L2 = x1 = [H6ITT6] T2 = [H6] X2 = [H6]
H3 = H6 T3 = [1 13 =[]
L6 = [H2] T6 = []

126 Expressing Procedural Algorithms ~ Chap. 4

[1]1 <-(4)
[2] <-(1) <-(2) <~(3)
[3] <-(5)
(4] <-(&)

(7) 7- append(([],[H2],TT6), append(L2, [H1], [a,b]).
The current goal matches [3] producing:

X = [H1,H2,H6]

L1 = [a,b]

T1 = [H2,H6]

L2 = X1 = [H6|TT6] = [H6|[H2]] = [H6,H2]

T2 = [HE]

L3 = X2 = [H6] T3 = [] 3 =[] H3 = H8
L6 = [H2] T6 = [] TT6 = [H2]

[1] <-(&)

[2] <-(1) <-(2) <-(3)
[3] <=(5) <-(7)
[4] <-(6)

(8) ?- append([H6,H2], [H1], [a,b]).

Without tracing further, we can see that (8) must fail. We cannot append a list with
two members and a list with one member to produce a list with only two members.
Also, we cannot resatisfy (7) since one of the arguments is [and therefore will not
unify with [4]. The marker for (6) drops off the database. We cannot resatisfy (5)
because of [1. So we backtrack all the way to (4), deinstantiate all the variables with
subscripts higher than 3, move the pointer for (4) down to [2], and the situation is:

X = [H1,H2,H3|T3]

L1 = [a,b] Ti = [H2,H3|T3] It = L2
X2 = L3 T2 = [H3|7T3]

[1]

[2] <-(1) <~(2) <-(3) <~(4)

[3]

[4]

(4) ?- reverse(T3,X3), append(X3, [H3],L3), append(X2, [H2],L2),
append(L2, [H1], [a,b]).

Notice that the current goal is now the same as when we were at (3). If we continue,
we will reach a situation where X = [H1,H2,H3,H4|T4] and the current goal will be
reverse(T4,X4). Of course, the reverse of [a,b] can’t have four members any more
than it could have three. A new variable will be added to the list X and the process
will repeat until we fill the stack and the machine stops.

Sec. 4.18. Bibliographical Notes 127

This last example shows how we can use hand computations to discover why
Prolog behaves the way it does when it does something unexpected. Sometimes
using the trace facility built into a Prolog interpreter is confusing since we only see
the current goal and cannot at the same time view either the preceding goals or the
knowledge base with the pointers to the clauses used to satisfy the preceding goals.
A good method to better understand what the trace is telling you is to carry on a
hand computation on paper as you run the trace.

Exercise 4.17.1

Try some of the hand computations in this section and trace the same computations
using the Prolog debugger. Compare the results. Does your debugger display numbers
that indicate which clauses are involved in each query?

4.18. BIBLIOGRAPHICAL NOTES

On the art of expressing iteration through tail recursion, see Abelson and Sussman
(1985), who use Scheme, a Lisp dialect. Tail recursion optimization appears to have
originated with Scheme (Steele 1978); it has spread to Common Lisp as well as
Prolog. The implementation of tail recursion optimization is discussed by Warren
(1986), who points out that append is tail recursive.

For detailed information on how a Prolog interpreter works, read Hogger
(1984:181-221), then Maier and Warren (1988), and finally Campbell (1984, a collection
of articles) and Ait-Kaci (1991).

Chapter 5

Reading Data in Foreign Formats

5.1. THE PROBLEM OF FREE-FORM INPUT

We noted in Chapter 2 that the usual Prolog input routine, read/1, expects all data to
be written with Prolog syntax. Obviously, in the real world of commercial software,
this is an unrealistic demand. In this chapter we show you how to make Prolog read
data in any format you choose; as a grand finale we present a Prolog program that
reads Lotus .WKS spreadsheets.

The amount of attention you devote to this chapter will depend on your needs.
There’s no logic programming theory here — only practical algorithms. If you're an
Al experimenter, you may want to take it somewhat lightly, looking back at it later
if the need arises. If you're a commercial software developer, this may well be the
chapter that makes Prolog usable in your application.

The procedures defined in this chapter are not meant to be used blindly. They are
instructive examples, and we assume that before incorporating them into your
programs, you will study how they work and adapt them to meet your needs
more exactly.

5.2. CONVERTING STRINGS TO ATOMS AND NUMBERS

Let’s start with keyboard input. We’d like for the user to be able to type anything at
the keyboard and have it go into Prolog as an atom or number, like this:

120

130 Reading Data in Foreign Formats Chap. 5

7- read_atom(What).
this is an atom (ftyped by user)
What = ’this is an atom’

?- read_num(What).
3.1416 (typed by user)
What = 3.1416

To make this work, we’ll rely on read_stz, defined in Chapter 3 and shown, along
with some other predicates, in Figure 5.1. Many programs later in this book will
assume that the predicates in this file (READSTR.PL) are available and have been
debugged to run properly on your computer.

Usually, what you want from the input is not a list of character codes, but an
atom or number. As we will see in Chapter 7, strings (lists) are bulky, and character-
string data should be stored as atoms where feasible. Conversion of strings to
numbers is obviously essential if you want to read numeric data from the keyboard
or from text files.

There are three ways to approach the conversion process. First, the ISO Pro-
log standard defines two built-in predicates, atom_codes and number_codes, which
interconvert, respectively, atoms with strings and numbers with strings, like this:

?7- atom_codes (abc,What).

What = [97,98,99]

?7- atom_codes(What,"abc").
What = abc

?- number_codes(3.14,What).
What = [51,46,49,52]

?- number_codeé(What,"3.14").
What = 3.14

If number_codes is given a string that doesn’t make a valid number, or if either of its
arguments is of the wrong type, it raises a runtime error condition. We will explore
how to deal with these errors in the next section.!

Many older Prologs use name/2 to perform both kinds of conversions:

?- name (abc,What).
What = [97,98,99]

?- name (What,"abc").
What = abc

7- name(3.14,What).
What = [51,46,49,52]
?7- name(What,"3.14").
What = 3.14

There are a few Prologs in which name has the behavior prescribed for atom_codes
and the conversion of numbers is done some completely different way. Moreover,

!Pre-ISO versions of Quintus Prolog have these same predicates, but they are called atom_chars
and number.chars. The ISO standard has predicates called atom chars and number.chars, but they
produce lists of characters [1,1,k,e,’ ’,%,h,1,s] rather than strings.

Sec. 5.2. Converting Strings to Atoms and Numbers 131

% File READSTR.PL
% Reading and writing lines of text

% Uses get0, and works in almost all Prologs (mot Arity).
% read_str(-String)
% Accepts a whole line of input as a string (list of ASCII codes).

% Assumes that the keyboard is buffered.

read_str(String) :- getO(Char),
read_str_aux(Char,String).

read_str_aux(-1,[]) :- !. % end of file
read_str_aux(10,[]) :- !. % end of line (UNIX)
read_str_aux(13,[]) :- !. % end of line (DOS)

read_str_aux(Char, [Char|Rest]) :- read_str(Rest).

% read_atom(-Atom)
% Reads a line of input and converts it to an atom.
% See text concerning name/2 vs. atom_codes/2.

read_atom(Atom) :-
read_str(String),
name (Atom,String) . % or preferably atom_codes(Atom,String).

% read_num(-Number)
% Reads a line of input and converts it to a number.
% See text concerning name/2 vs. number_codes/2.

read, num(Atom) :-

read_str(String),
name (Atom,String) . % or preferably number_codes(Atom,String).

% write_str(+String)

% Outputs the characters corresponding to a list of ASCII codes.
write_str([Code|Rest]) :- put(Code), write_str(Rest).
write_str([]).

Figure 5.1 Routines to read free-form input.

132 Reading Data in Foreign Formats Chap. 5

name generally deals with errors by simply failing, but check your implementation
to be sure.

In what follows, we'll assume that you've successfully implemented read_atom
and read_num, defined roughly as follows:

read_atom(Atom) :- read_str(String), atom_codes(Atom,String).
read _num(Num) :- read_str(String), number_codes (Number, String).

and that these are in the file READSTR.PL (Figure 5.1). Be sure to check that they
work correctly in your Prolog.? '
There is a third way to convert strings into numbers: Pick off the digits one by
one, convert them to their numeric values, and do the arithmetic. Specifically, what
you do is maintain a running total, which starts as 0. Each time you get another
digit, multiply the total by 10, then add to it the value of that digit. For example,
converting the string "249", you’d do the following computations: ‘

Digit 2 (0x10)+2=2

Digit 4’ (2x10)+4=24

Digit ‘9’ (24 x10)+9 =249

You may never have to do this, but the algorithm is worth remembering in case you

have to deal with digits in an unusual base or format (e.g., hexadecimal or separated
by commas).

Exercise 5.2.1

On your computer, when you hit Return on the keyboard, does get0 (ISO get_code)
read it as code 10, code 13, or both? What if you read from a text file using see? Explain
how you found out. Does read_str need any modification in order to work reliably
when reading from files on your computer? If so, indicate what changes should be
made.

Exercise 5.2.2

Are read_str and write_str tfail recursive? Explain.

Exercise 5.2.3

Get read_atom and read_num working on your computer. Store the working versions
in file READSTR.PL. What does read_num do when its input is not a validly written
number?

Exercise 5.2.4

Put read_atom to practical use by modifying LEARNER PL (Chapter 2) to accept input
without requiring the user to use Prolog syntax.

2In ALS Prolog, use name to convert atoms, and deal with numbers thus:
read num(Num) :- read str(String), buf read(String, [Num]).
In Arity Prolog, do this:

read_str(String) :- read line(0,Text), list.text(String,Text).
read.atom(Atom) :- vead line(0,Text), atom string(Atom,Text).
read num(Num) :- read line(0,Text),
((int_text (Num,Text), !) ; float.text (Num,Text,general)).

Sec. 5.3. Combining Our Code with Yours 133

Exercise 5.2.5
Modify read_atom to convert all letters to lowercase as they are read in. Call the
modified procedure read_lc_atom.

Exercise 5.2.6

Define a procedure, read_hex_num, that is like read_num except that it reads hexadecimal

numbers:

?- read_hex_num(What).
20

What = 32

?- read_hex_num(What) .
10fe

What = 4350

Use a digit-by-digit conversion algorithm similar to the one described in this section,
but adapted for hexadecimal.

5.3. COMBINING OUR CODE WITH YOURS

Suppose you're writing a program in which you want to use the predicates that are
defined in READSTR.PL. You have two choices:

e You can copy READSTR.PL, entire, into your program.

e You can insert a directive in your program that causes READSTRPL to be
consulted.

The second of these is what we’ll explore here. In ISO Prolog, and in many existing
implementations (including Quintus, SWI, and LPA), the directive

:— ensure_loaded(’readstr.pl’).

means, “If READSTR.PL has not already been consulted, consult it now.” That’s
exactly what you need. (Of course it works only if READSTR.PL is in the current
directory.)

Other Prologs don’t have ensure_loaded. A reasonable substitute is to use
reconsult, like this:

:= reconsult(’readstr.pl’).

On encountering this line in your program, the Prolog system will reconsult READ-
STR.PL, whether or not READSTR.PL has been consulted before. This wastes a bit
of time, but nothing serious goes wrong.

Early versions of Arity Prolog (before 5.0) have trouble with nested reconsults.
If you find that you cannot include a reconsult directive in a file that is being
reconsulted, your best option is to copy one program, whole, into the other, thus
bypassing the problem of how to reconsult it.

Exercise 5.3.1

Does your Prolog support ensure_loaded? If not, do embedded reconsult directives
work correctly? Experiment and see.

134 Reading Data in Foreign Formats Chap. 5
5.4. VALIDATING USER INPUT

Any time a program accepts input from the user at the keyboard, two problems can
arise:

¢ The user may type something that is not an acceptable answer (e.g., 4 when
the menu choices are 1, 2, and 3).

o The user may type something that is not even interpretable (e.g., xyz when a
number is expected).

In either case the program should do something sensible. It’s convenient to use a
repeat loop to validate user input, like this:

get_number(N) :- repeat,
write(’Type a number between 1 and 3: °),
read_num(N),
N =< 3,
N> 1,

If the user types a number that is out of range, execution backtracks to the repeat
goal, the computer prints the prompt again, and the user gets another chance. If there
are several discrete choices, it's convenient to use member with a list of alternatives:

get_choice(C) :- repeat,
write("Type a, b, or c: ?),
read_atom(C),

member (C, [a,b,c]),
I -

Still faster, but bulkier, is the following approach:

get_ok(C) :- repeat,
write(’Type a, b, or c: ’),
read_atom(C),

ok(C),
t.

ok(a).
ok(b).
ok(c).

The last example shows that you can use all the power of Prolog inference to decide
what answers are acceptable.

A greater challenge arises when the user types uninterpretable input, such as
letters where a number is expected. In some Prologs, read_num will simply fail in
such a case:

?- read_num(N).
asdf (typed by user)

no.

Sec. 5.5. Constructing Menus 135

That’s simple enough: You can use repeat loops, and execution will backtrack from
uninterpretable answers the same way as from answers that have been examined
and found unacceptable.

In other Prologs, uninterpretable numbers cause runtime errors, stopping the
program. Fortunately, the ISO standard includes a built-in predicate, catch, which
can catch these errors and keep them from interrupting the program. If you have
ISO Prolog available, try this:

read_num_or_fail(N) :- catch(read_num(N),_,fail).
That is: “Execute read_num(N), or if any error arises, simply fail.”

Exercise 5.4.1

Try out get_number, get_choice, and get_ok (the examples just given) on your com-
puter and verify that they work as intended.

Exercise 5.4.2
Rework GETYESNO.PL from Chapter 2 so that it uses repeat rather than recursion.

Exercise 5.4.3

On your computer, what does read_num do if the user types something that is not a valid
number? If needed, check your manual and see if you canimplement read_num_or_fail.

5.5. CONSTRUCTING MENUS

Because Prolog is good at handling complex data structures, it is a simple matter to
write a procedure that will create and display a menu when you tell it what the menu
choices should be. Figure 5.2 shows one example. The menu generator defined there
is called by queries such as this:

?- menu([item(’Georgia’,ga),item(’Florida’,fl),item(’Hawaii’,hi)], What).
1 Georgia
2 Florida

3 Hawaii
Your choice (1 to 3): 2

What = f1

Naturally, menu/2 would normally be called from another procedure that needs to
display a menu. Its first argument consists of a list of the form

[item(Messagel,Valuel) ,item(Message2,Value2),item(Message3,Value3)]

with up to 9 items, each consisting of a message to be displayed and a result to
be returned (in the second argument position) if the user chooses that item. The
message is normally an atom; the “value” can be a term of any kind.

136 Reading Data in Foreign Formats Chap. 5

The menus that you get this way are very unsophisticated. In fact, they ask the
user to choose an arbitrary number, which is a relatively error-prone kind of choice.
Menus that use initial letters or mouse pointers are easier to use and less subject to
€erTorsS.

Note, however, that you could easily replace menu/2 with any other kind of
menuing routine that you care to implement. The important thing is that you specify
what the menu choices are to be, and menu/2 takes care of the rest of the work. Thus,
menu/2 establishes an important conceptual boundary between deciding what is to
be on the menu, and deciding how to implement the menu. Few other languages let
you make such a clean distinction.

Exercise 5.5.1

Get menu/2 working on your computer and verify that it works correctly.

Exercise 5.5.2

Note that menu/2 uses a recursive loop to deal with invalid choices. Rewrite it to use a
repeat loop instead.

Exercise 5.5.3

Rewrite menu/2 so that the user makes a choice by typing, not a number, but the first
letter of the word to be chosen.

5.6. READING FILES WITH get_byte

When we move from reading the keyboard to reading files, we have two new con-
cerns:

o Are we going to get every byte of the file intact and unchanged?
e What is going to happen at end of file?

Here, unfortunately, various implementations of Prolog part ways. In Arity Prolog,
get0 simply fails at end of file, while in most other Prologs it returns code —1. In ALS
Prolog, get0 skips all bytes with value 0 or 13; in Cogent (Amzi) Prolog, get0 treats
value 26 as an end-of-file mark; in other Prologs, get0 preserves all bytes intact.

To simplify matters, we will use the ISO Prolog predicate get_byte/1, which
reads each byte as a numeric code and returns ~1 at end of file. (The difference
between get_byte and get_code is that get _byte is guaranteed not to do any special
handling of end-of-line marks, end-of-file marks, or unprintable codes.) If get_byte
isnotbuilt into your Prolog, you will have to define it. In most Prologs, this definition
suffices,

get_byte(C) :- get0(C).

because get0 and get_byte are the same thing. In Arity Prolog, use this definition
instead:

Sec. 5.6. Reading Files with get_byte

% File MENU.PL
% A menu generator in Prolog

% menu(+Menu, -Result)
% Displays a menu of up to 9 items and returns the user’s choice.

% Menu is a list of the form [item(Message,Value),item(Message,Value)...

% where each Message is to be displayed and Value is to be returned
% as Result if the user chooses that item.

menu(Menu,Result) :- menu_display(Menu,49,Last),
menu_choose (Menu,49,Last,Result),
nl.

% Display all the messages and simultaneously count them.
% The count starts at 49 (ASCII code for ’1°).

menu_display([],SoFar,Last) :-
]
% not an item, so don’t use this number
Last is SoFar - 1.

menu_display([item(Message,_)|Taill ,SoFar,Last) :-
put(32),
put(32),
put (SoFar), J appropriate digit
put(32), % blank
write(Message),
nl)
Next is SoFar + 1,
menu_display(Tail,Next,Last).

% Get the user’s choice. If invalid, make him/her try again.

menu_choose (Menu,First,Last,Result) :-
write(’Your choice (°),
put (First),
write(’ to),
put(Last),
write(’): ?),
get (Char),
menu_choose_aux(Menu,First,Last,Result,Char).

Figure 5.2 A menu-generating procedure (continued on next page).

137

138 Reading Data in Foreign Formats

menu_chcose_aux(Menu,First,Last,Result,Char) :-
Char >= First,

Char =< Last,

]
s 2

menu_select (Menu,First,Char,Result) .

menu_choose_aux(Menu,First,Last,Result,-) t-
put(?), % beep
put(13), i return to beginning of lime
menu_choose (Menu,First,Last,Result).

% Find the appropriate item to return for Char
menu_select([item(_,Result)I_],First,First,Result) =1,
menu_select([_|Taill ,First,Char,Result) :-
NewFirst is First+1,
menu_select(Tail,NewFirst,Char,Result).
% Demonstrate the whole thing
demo :~ menu([item(’Georgia’,ga),
item(’Florida’,fl),
item(’Hawaii’,hi)],Which),
write(’You chose: ?),

write(Which),
nl.

% End of MENU.PL

Figure 5.2 (Continued).

Chap. 5

Sec.5.7. File Handles (Stream Identifiers) 139

get_byte(C) :- get0(C), !.
get_byte(-1).

Experimentation may be needed to determine how to best define get_byte in your
Prolog.?

Exercise 5.6.1

Get get_byte working on your computer. Ensure that it works correctly not only when
reading from the keyboard, but also when reading a file using see.

Exercise 5.6.2

On your computer, does get_byte (as you have defined it) let you repeatedly attempt
to read past the same end of file, or does it give a runtime error if you bump into the
same end-of-file mark more than once?

5.7. FILE HANDLES (STREAM IDENTIFIERS)

In the rest of this chapter, we will perform all file input by redirecting standard input
with see. We do this reluctantly; it’s portable but risky. In particular, if the program
crashes while input is redirected, you may not be able to type any further commands
into the Prolog system.

Almost every Prolog implementation provides a way to access files through
HANDLES (STREAM IDENTIFIERS). For example,

read(H,X)

usually means “Read a term into X from the file whose handle is H.” The handle is a
value that is given to you when you open the file.

Unfortunately, the syntax for accessing files in this way is widely variable. The
proposed ISO system is described in Appendix A; the actual syntax used in Quintus
Prolog and SWI Prolog looks like this:*

test :- open(’myfilel.txt’,read,Filel),
read(Filel,Term),
close(Filel),
open(’myfile2.txt’,write,File2),
write(File2,Term),
close(File2).

The idea is that the open predicate opens a file for either reading or writing and
instantiates File1 toitshandle. You then give Filel asan argument of all subsequent
predicates that use the file.

3In Cogent Prolog 2.0, to read all the bytes of a file transparently, you will have to open it as binary
and access it by file handle (see the next section and your manual). As far as we can determine, users of
ALS Prolog 1.2 are simply out of luck, unless they want to link in a subroutine written in C.

“For an Arity Prolog example, see Appendix B.

140 Reading Data in Foreign Formats Chap. 5

Exercise 5.7.1

Adapt the example just given so that it works on your computer (or demonstrate that it
already works as is).

Exercise 5.7.2

Adapt the predicates in READSTR.PL to take an extra argument for the file handle, and
get them working on your computer. Notice that you can add the new predicates to
READSTR.PL without conflict, because they have different arities than the old ones.

5.8. FIXED-LENGTH FIELDS

Many data files in the business world consist of fixed-length fields; Figure 5.3 shows
an example. Each line is called a RECORD. The fields may or may not consist of
characters, and records may or may not end with end-of-line marks. That is, the file
may or may not be a text file.

Reading a fixed-length field is simple: start with the number of bytes to be
read, and count down to 0, like this:

% read_bytes(+N,-String) “4% preliminary version
% Reads N bytes into String.

read _bytes(0,[]) :- !,

read_bytes(N, [C|Rest]) :-
get_byte(C),
NextN is N-1,
read_bytes(NextN,Rest).

Notice thatin Prolog, we often count down when an ordinary programming language
would countup (for i:=1 to Northelike). Thatletsus compare the loop variable to
0 (a constant) rather than comparing to N (which would have to be another parameter
supplied at runtime).

The version of read_bytes that we’ll actually use is more complicated and is
shown in Figure 5.4. It uses one character of lookahead to check for an unexpected

Covington Michael Athens Ga. 4633

Nute Donald Athens Ga. 5462

Vellino Andre Ottawa Ont.0123
o e, e o N Nyt
12 10 12 4 4

Figure 5.3 File FIXEDLEN.DAT, a data file with fixed-length fields. Each line may be foliowed
by a 1- or 2-byte end-of-line mark, depending on the operating system and the file format.

Sec. 5.8. Fixed-Length Fields 141

end-of-file mark. In Figure 5.4 we also define skip_bytes, which skips a specified
number of bytes without storing them in a list.

Most Prologs also include a seek command to jump to a particular position in
a random-access file, but we do not use it here because of lack of standardization.
Even the ISO standard makes the details of this operation up to the implementor.

Exercise 5.8.1

Get read_bytes and skip_bytes working on your computer. Demonstrate that they
work by using them to read FIXEDLEN.DAT.

Exercise 5.8.2

On your computer, what does read_bytes do if you repeatedly try to read past the end
of the file?

Exercise 5.8.3

Why is “?- skip_bytes(80).’ faster than ‘?- read_bytes(80,_.)."?

Exercise 5.8.4

Define a predicate read_record/1 that will read FIXEDLEN.DAT one record at a time,
returning each record as a Prolog term, like this:

?- see(’fixedlen.dat’), read_record(A), read_record(B), seen.

A = record(’Covington ’,’Michael ’,’Athens ’,’Ga. ?,4633)

B = record(’Nute ’,’Donald >, ’Athens ’,’Ga. ’,5462)

You will have to use read_bytes to read the individual fields as strings, and then use
name (or atom_codes and number_codes) to convert the strings to atoms or numbers as
appropriate. Be sure you don’t forget the end-of-line mark, which will be either 1 or 2
bytes long depending on the operating system.

Exercise 5.8.5

Is ’Athens ? the same term as ’Athens’? Explain.

Exercise 5.8.6

Modify read_record to discard blanks at the beginning and end of each field, so
that you get >Athens’ (etc.) without unnecessary blanks. Call your new procedure
read_record_1.

Exercise 5.8.7
Modify read_bytes so that it if hits the end of the file, it returns the atom end_of_f£ile
instead of returning a string. Call your new procedure read_bytes_1.

Exercise 5.8.8

Using read_bytes_1, modify read_record so that it, too, returns end_of_file if it hits
the end of the file. Call your new procedure read_record_2.

142 Reading Data in Foreign Formats Chap. 5

% File READBYTE.PL
% Reads fixed-length fields from files.

% Insert appropriate definitiom of get_byte here:
get_byte(C) :- get0(C).

% read_bytes(+N,-String)
% Reads the next N bytes from current input, as a list of ASCII codes.
% Stops if end of file is emcountered pPrematurely.

read_bytes(N,String) :-
get_byte(C),
read_bytes_aux(C,N,String).

read_bytes_aux(-1,_,[]) :- !. % end of file, so stop
read_bytes_aux(C,1,[C]) :- . /, no more bytes to read, so stop
read_bytes_aux(C,N,[CiRest]) :- % keep going

get_byte(NextC),
NextN is N-1,
read_bytes_aux(NextC,NextN,Rest).

% skip_bytes(+N)
% Skips the next N bytes on standard input

skip_bytes(0) :- 1!. % special case
skip_bytes(N) :- % ordinary case
N >0,

get_byte(C),
skip_bytes_aux(C,N).

skip_bytes_aux(-1,_) :- !. % end of file, so stop
skip_bytes_aux(_,N) :- % keep going

NextN is N-i1,

skip_bytes(NextN).

% Demonstration, should print [65,116,104,101,110,115,32,32,32,32,32,32]

demo :- see(’fixedlen.dat’),
skip_bytes(22),
read_bytes(12,String),
seen,
write(String), nl.

Figure 5.4 Routines for reading fixed-length fields.

Sec. 5.10. Comma-Delimited Fields 143
5.9. NOW WHAT DO YOU DO WITH THE DATA?

Now that you can read data files from Prolog, what do you do with them? Depending
on the purpose of your Prolog program, there are three main options:

e Read the file one record at a time and process each record somehow.

This is a suitable approach if the purpose of your program is to work through
the whole file and compute something from it.

e Read each record and convert it into a Prolog fact, which is then asserted into
the knowledge base.

This is a practical approach if you want to use the file to answer queries, and
the file (or the portion of it you are interested in) is not excessively large. (The
built-in predicate statistics will tell you how much memory is available in
your Prolog implementation.)

e Search the whole file, on disk, when you need information from it.

This is the slowest option, but sometimes the only practical one if the file is
gigantic. Fortunately, most large database files can be searched in ways that are
faster than a pure sequential search — each record contains pointers to other
records, or there is a hashing algorithm, or both.

The structure of database files is outside the scope of this book, but we want you to
be aware that there are many different ways to use data within a Prolog program.

Exercise 5.9.1

Drawing upon your answers to all the exercises in the previous section, define a predicate
record/6 that can be queried as if it were a set of Prolog facts, but which actually works
by opening FIXEDLEN.DAT and finding the first record that matches your query. For
example, if you type

?- record(Name,FirstName, ’Athens’,State,Num).

the computer should open FIXEDLEN.DAT, start reading, and eventually yield the
answer:

Name=’Covington’ FirstName=’Michael’ State=’Ga.’ Num=4633

To simplify matters, do not look for alternative solutions; use only the first record that
matches the query.

5.10. COMMA-DELIMITED FIELDS

Figure 5.5 shows another data format that is popular for transferring data between
business software packages: COMMA-DELIMITED FIELDS, i.e., text with the fields sep-
arated by commas. Commonly, although not always, alphabetic fields are enclosed
in quotes so that commas within them will not be taken as separators.

Reading comma-delimited fields in Prolog is straightforward. The key is to
implement a procedure called read_until that accepts bytes up to and including a

144 Reading Data in Foreign Formats Chap. 5

4633, "Covington","M","A" ,"Athens", "Georgia"
5462, "Nute","D" ,"E","Athens", "Georgia"
123,"Vellino","A", ,"Ottawa", "Ontario”

Figure 5.5 File COMMADEL.DAT, a data file with comma-delimited fields.

specific code (or end of file or end of line, whichever comes first). Then, to read a
comma-delimited field, simply read_until a comma.

The quotes complicate the problem slightly. The actual algorithm is to read
the first character of the field, and then, if it is not a quote, read_until a comma.
However, if the field begins with a quote, the computer must read_until the closing
quote (thereby obtaining the data), then read_until the comma (to discard it).
Figure 5.6 shows the complete implementation.

Exercise 5.10.1

Get read_cdf working on your computer. Show that it can read COMMADEL.DAT
field-by-field.

Exercise 5.10.2

Reimplement read_record from two sections back, but this time make it use read_cdf
to read COMMADEL.DAT. Call it read_cdf_record.

5.11. BINARY NUMBERS

Not all data files consist of printable characters. Some of the fields in any data file
are likely to be binary numbers. That is, the number 36, for instance, is likely to be
represented not as the bytes for the characters ‘3’ and ‘6’, but as the binary number
36 (100100).

Small integers are often stored in 16 bits (two bytes). For example, the number
1993 is, in binary, 0000011111001001. That won’t fit into one byte, so it’s split across
two: 00000111 11001001. The Prolog program’s job is to read these two bytes
(which individually have values of 7 and 201 respectively) and put them together:
(7 x 256) + 201 = 1993. In effect, we're treating the bytes as base-256 digits.

There are three complications. First, on IBM PC compatible machines, the bytes
are stored in the opposite of the order you might expect: The less significant byte
comes first. (Sun Sparcstations put the more significant byte first.) Second, negative
numbers are represented in twos-complement notation, so if you get 65535, you
should convert it to ~1; in fact, any value greater than 32767 actually represents a
negafive number. Third, all these calculations assume that the Prolog system’s arith-
metic is not limited to 16 bits per integer. Virtually all Prolog systems automatically
switch to floating-point arithmetic when the available integers are not big enough, so
we do not expect a problem here. The code for reading signed and unsigned 16-bit
integers is shown in Figure 5.7.

Sec. 5.11. Binary Numbers

% File READCDF.PL
% Reading comma-delimited fields from a file

% Insert suitable definition of get_byte here
get_byte(C) :- get0(C).

% read_until(+Target,-String)
% Reads characters until a specific character is found,
% or end of line, or end of file.

read_until(Target,String) :-
get_byte(C),
read_until_aux(C,Target,String).

% end of file, so stop
% end of line (DOS)
% end of line (UNIX)

read_until_aux(-1,_,[1)
read_until_aux(13,_,[])
read_until_aux(10,_,[])

read_until_aux(T,T,[]) % found the target, so stop

read_until_aux(C,T,[C|Rest]) :- 9 keep going
read_until(T,Rest).

% read_cdf (-String)
% Reads a comma-delimited field.

read_cdf (String) :-
get_byte (FirstChar), % look at first character
read_cdf_aux(FirstChar,String).

read_cdf_aux(34,String) :- % field begins with "
]
read_until(34,String), % read until next "
read_until(44,_). % consume the following comma
read_cdf_aux(C,String) :- % field does not begin with "
read_until_aux(C,44,String). % (just in case C is -1 or 10...

Figure 5.6 Routines to read comma-delimited fields.

145

146 Reading Data in Foreign Formats Chap. 5

% File READI16.PL
4 Routines to read 16-bit binary integers from a file

% Assumes less significant byte comes first (as on PC’s, not Sparcstations).
%4 If this is not the case, swap Lo and Hi in read_ul6/1.

t- emsure_loaded(’readbyte.pl’). Y or use reconsult if necessary

% read_ui6(-Integer)

% Reads 2 bytes as a 16-bit unsigned integer, LSB first.

read_ul6(I) :- % 16-bit unsigned integer

read_bytes (2, [Lo,Hi]),
I is Hi#256 + Lo.

% read_il6(-Integer)
% Reads 2 bytes as a 16-bit signed integer, LSB first.

read_il6(I) :- % 16-bit signed integer

read_ul6(U),
ulé_to_i16(U,I).

% ulé_to_il6(+U,-I)
% Converts 16-bit unsigned to signed integer.

ul6_to_i16(U,I) :- U > 32767, !, I is U - 65536.

ulé_to_i16(0,U).

Figure 5.7 Routines for reading 16-bit binary integers.

Sec. 5.11. Binary Numbers 147

Even floating-point numbers can be stored in binary, and a huge variety of
formats is used. We will look at IEEE 64-bit format, a representation recommended
by the Institute of Electrical and Electronic Engineers. In IEEE 64-bit format, a
floating-point number consists of:

e One bit to denote sign (1 for negative, 0 for positive);
e 11 bits for the exponent, biased by adding 1023;
e 56 bits for the mantissa, without its first digit (which is always 1).

The MANTISSA and EXPONENT are the parts of a number written in scientific notation.
For example, in the number 3.14 x 102, 3.14 is the mantissa and 23 is the exponent.
Naturally, IEEE 64-bit format is binary, not decimal.

The first digit of the mantissa is always 1 because floating-point numbers are
normalized. To understand normalization, think about how numbers are written in
scientific notation. We never write 0.023 x 10° — instead, we write 2.3 x 101. That
is, we shift the mantissa so that its first digit is nonzero and adjust the exponent
accordingly. That’s called NORMALIZATION. Now in binary, if the first digit is not
0, then the first digit is necessarily 1. That’s why the first digit of the mantissa of a
normalized binary floating-point number can be omitted.

Finally, the exponent is normalized by adding 1023 so that the available range
will be —1023 to +1024 rather than 0 to 2047.

If we can evaluate the sign, the mantissa, and the exponent, the value of the
floating-point number is given by the formula:

Value = —158" x (1 + Mantissa) x 2E*ponent=1023

Recall that Sign is either 1 or 0.

The evaluation is clumsy because the boundaries between sign and exponent,
and between exponent and mantissa, fall within rather than between the bytes.
Fortunately, we can pick the bytes apart using simple arithmetic: if B is the value of
an 8-bit byte, thenB // 128isits first bitand B mod 128 is the value of its remaining
bits. In the same way, we can split a byte in half by dividing by 16.

There are two special cases:

e If the mantissa and exponent are all zeroes, then the number is taken to be
exactly 0.0 (not 1 x 27192 which is what the formula gives and which would
otherwise be the smallest representable number). This gets around the problem
that the mantissa of 0 never begins with 1, even after normalization.

e Ifall 11 bits of the exponent are 1, the number is interpreted as “not a number”
(“NaN”), i.e., a number with an unknown or uncomputable value. (There is a
further distinction between NaN and “infinity,” which we will ignore here.)

One last subtlety: The bytes are stored in reverse order (least significant first); that
is, they are read in the opposite of the order in which you would write a number in
binary. This affects only the order of the bytes themselves, not the order of the bits
within the bytes.

148 Reading Data in Foreign Formats Chap. 5

Figure 5.8 contains the actual code to read IEEE 64-bit floating-point numbers.
It is not elegant, but it shows that Prolog has the power to handle unfamiliar data
formats, even very exotic ones. You do not have to have 64-bit arithmetic to run this
code; it works in any floating-point arithmetic system.

IEEE and other floating-point number formats are described concisely by Kain
(1989:456-460). Arity Prolog has a large library of built-in predicates for reading
binary numbers; other Prologs may also have libraries to handle similar tasks.

Exercise 5.11.1

Get read_i16 and read_u16 working on your computer. Test them by reading the byte
codes of the characters ‘! 1’, which should decode as 8224 (the same whether signed or
unsigned).

Exercise 5.11.2 (small project)

Using a C or Pascal program, write some 16-bit binary integers to a file, then read them
back in using a Prolog program. (To write binary integers in C, use fwrite with an
integer argument; in Pascal, create a file of integer.)

Exercise 5.11.3
Get read_£64 working on your computer. Test it by reading the byte codes of the
characters ‘! ! 1 ABCDE’, which should decode as approximately 4.899 x 107,

Exercise 5114 (small project)
If you have access to a C or Pascal compiler that uses IEEE floating-point representation,
then do the same thing as in Exercise 5.11.2, but with floating-point numbers.

Exercise 5.11.5

Modify read_u16, read_il16, and read_£64 so that each of them returns the atom
end_of_file if the end of the file is encountered where data is expected.

5.12. GRAND FINALE: READING A LOTUS SPREADSHEET

Figure 5.9 shows a Prolog program that reads spreadsheets in Lotus .WKS format.
Because so much information in the business world is stored in spreadsheets, or is
easily imported into them, a program like this can greatly extend the usefulness of
Prolog.

%Valden (1986) gives a full description of .WKS format, which is the file format
used by early versions of Lotus 1-2-3. More recent spreadsheet programs can still
use .WKS format if you tell them to, although it is no longer the default.

The spreadsheet file consists of a series of FIELDS (RECORDS), each of which
comprises:

e A 16-bit OPCODE (operation code) indicating the type of field;
o A 16-bit number giving the length of the field;
o The contents of the field, which depend on its type.

Sec. 5.12. Grand Finale: Reading a Lotus Spreadsheet

% File READF64.PL
% Routine to read IEEE 64-bit binary numbers from a file

:~ ensure_loaded(’readbyte.pl’). J or use recomsult if necessary
% read_£64(-Float)
% Reads 8 bytes as an IEEE 64-bit floating-point number.

read_£64(Result) :-
read_bytes(8, [B0O,B1,B2,B3,B4,B5,B6,B7]),

Sign is B7 // 128, % 1 bit for sign

B7L is B7 mod 128, % first 7 bits of expoment
B6H is B6 // 16, % last 4 bits of exponent
B6L is B6 mod 16, % first 4 bits of mantissa

read_f64_aux(BO,Bl,B2,BS,B4,BS,BéL,BGH,BTL,Sign,ReSult).
read_f£64_aux(0,0,0,0,0,0,0,0,0,_, 0.0) :- !.
read_£64_aux(_,_,_,_,_,_,_,15,127,_, not_a_number) :- !.
read_£64_aux(B0O,B1,B2,B3,B4,B5,B6L,B6H,B7L,Sign, Result) :-

Exponent is B7L*16 + B6H - 1023,
Mantissa is

((((((BO/256+B1)/256+B2) /256+B3) /256+B4) /256+B5) /256+B6L) /16 + 1,

power(-1,Sign,S),
power (2,Exponent ,E),
Result is S * Mantissa * E.

% power(X,N,Result)
% Finds the Nth power of X (for integer N). Needed because some
% Prologs still don’t have exponentiation in the ’is’ predicate.

power(_,0,1) :- !.

power(X,E,Result) :-

E >0,

!,

EE is E-1,
power (X,EE,R),
Result is R*X.

power (X,E,Result) :-
% E<O,
EE is E+1,
power(X,EE,R),
Result is R/X.

Figure 5.8 Procedure to read IEEE 64-bit floating-point numbers.

149

150 Reading Data in Foreign Formats Chap. 5

The bulk of the fields in an ordinary spreadsheet are NON-DATA FIELDS — that is,
they contain information about how to print or display the spreadsheet. In order to
preserve all defaults, a full set of these is saved with even the smallest spreadsheet.
Accordingly, we can ignore nearly all the opcodes. The opcodes that are significant
are:

0 Beginning of file
1 End of file
13 Integer
14 Floating-point constant
15 Text constant (“label”)
16 Formula with stored floating-point value

Although our program does not try to decode formulas, it would be quite possible to
do so, producing expressions that could be evaluated using is. We content ourselves
with retrieving the floating-point value that is stored along with each formula.

Like all the examples in this chapter, LOTUS.PL reads from standard input.
Naturally, in any practical application, it should be adapted to read from a file
identified by a handle.

Exercise 5.12.1
Get LOTUS.PL working on your computer. Write a procedure, dump_spreadsheet,
which reads an entire spreadsheet file and writes out the contents of each field.

(The program files accompanying this book include a spreadsheet file, SAM-
PLE.WKS, which you can use for testing. Be sure that if you transfer SAMPLE.WKS
from one computer to another, it is transferred in binary form.)

Exercise 5.12.2

Modify LOTUS.PL to complain if the first field of the spreadsheet is not a beginning-of-
file code. (That situation would indicate that the file being read is probably not really a
spreadsheet, at least not one in .\WKS format.)

Exercise 5.12.3

Modify LOTUS.PL to return end_of _file if it encounters an unexpected end of file. (This
will depend on having previously made similar modifications to read_bytes, read_uls,
etc.)

Exercise 5.12.4 (term project)

Modify LOTUS.PL to decode the formulas stored in the spreadsheet. For a description
of the data format, see Walden (1986).

Sec. 5.12. Grand Finale: Reading a Lotus Spreadsheet 151

% File LOTUS.PL
% Reads a Lotus .WKS spreadsheet, field by field.

:~ ensure_loaded(’readbyte.pl’). 7’ or use reconsult if necessary
:- ensure_loaded(’readil6.pl’). % or use reconsult if necessary
:- ensure_loaded(’readf64.pl’). % or use recomsult if necessary

% Insert definition of atom_codes here if not built in
atom_codes(Atom,Codes) :- name(Atom,Codes).

% read_significant_field(-Field)
% Reads a field from the spreadsheet (like read_field below),
% but skips non-data fields.

read_significant_field(Result) :- % like read_field, skips non-data
repeat,
read_field(R),
\+ R == non_data_field,
1

Result = R.

% read_field(-Field)
% Reads a field from the spreadsheet, returning onme of the following:

% beginning of_file -- Lotus beginning-of-file code

% end_of_file -- Lotus end-of-file code

% cell(Col,Row,integer,Value) -- An integer. Col and Row numbered from O.
% cell(Col,Row,float,Value) -- A floating-point number.

% cell(Col,Row,formula,Value) -- The numerical value of a formula.

% cell(Col,Row,text,Value) -~ A text field (as a Prolog atom).

% non_data_field -- Anything else (print formats, etc.).

read_field(Result) :-
read_ul6(0Opcode),
read_field_aux(Opcode,Result).

read_field_aux(0,beginning of_file) :-

1
L]

read_ul6(Length),
skip_bytes(Length).

read_field_aux(1,end_of_file) :-

'.
% no need to read the trivial bytes that follow

Figure 5.9 Routines to read a spreadsheet in .WKS format (continued on next page).

152 Reading Data in Foreign Formats

read_field aux(13,cell(Col,Row,integer,Value)) :-
f
skip_bytes(3), % length and format information
read_ul6(Col),
read_ui6(Row),

read_i16(Value).

read_field_aux(14,cell(Col,Row,float,Value)) :-
§
skip_bytes(3), % length and format information
read_ul6(Col),
read_ul6(Row),

read_£64(Value).

read_field aux(15,cell(Col,Row,text,Value)) :-
L
i)
read_ul6(Length),
skip_bytes(1), % format code
read_uil6(Col),
read_uil6(Row),
Rest is Length - 7,
skip_bytes(1), % alignment code at beg. of string
read_bytes(Rest,String),
atom_codes(Value,String),
skip_bytes(1). % final zero byte at emnd of string

read_field aux(16,cell(Col,Row,formula,Value)) :-
1
skip_bytes(3), % length and format information
read_u16(Col),
read_u16(Row),
read f64(Value), % numeric value of formula
read_ul6(LengthOfRest),
skip_bytes(LengthDfRest). ¥ don’t try to decode formula itself

read_field_aux(_,non_data_field) :-
read_ul6(Length),
skip_bytes(Length).

% Demomstration

wksdemo :- see(’sample.wks’),
repeat,
read_significant field(F), writeq(F), =nl,
== gnd_of_£file,
]
seen.

Figure 5.9 (Continued).

Chap. 5

Chapter 6

Prolog as Its Own Metalanguage

6.1. LANGUAGE AND METALANGUAGE

A METALANGUAGE is a language used to describe another language. Throughout this
book we are describing Prolog in English; that is, we are using English as a metalan-
guage for Prolog. We could use English or any human language as a metalanguage
for any programming language. Some programming languages, such as ALGOL,
have special metalanguages in which their official descriptions are written.

Prolog is almost unique, however, in the extent to which it can serve as its own
metalanguage. This manifests itself in a number of features:

e A program can create new goals by computation and then execute them. That
s, you can use Prolog to describe how to construct Prolog goals.

e A program can examine itself (using clause) and modify itself (using assert
and retract).

* By declaring operators, a program can even change the syntax of the Prolog
language itself.

e A Prolog program can extend and modify the inference engine that controls
program execution. Thus, the language can change itself in ways that go
beyond superficial syntax.

These capabilities enable Prolog to do things that are completely foreign to most
programming languages. Crucially, Prolog blurs the distinction between program

153

154 Prolog as Its Own Metalanguage Chap. 6

and data. In most programming languages, you have to distinguish very clearly
between decisions that you make when writing the program and decisions that
the computer makes when running the program. For instance, all the arithmetic
expressions in a BASIC or Pascal program are written by the programmer in advance,
though the program may decide, at run time, which one of them to use. In Prolog,
the program can extend and modify itself as it runs. Because of this, rank beginners
often have an easier time learning Prolog than people who have been programming
in other languages and have learned, slowly and painfully, that computers don’t
work this way.

We have already used the metalinguistic features of Prolog for a few special
purposes. We briefly demonstrated the use of call, and LEARNER.PL, back in
Chapter 2, used assert to modify itself. In this chapter we will develop more
substantial extensions to the inference engine and syntax of Prolog.

Exercise 6.1.1

Can any language (human or artificial) serve as a metalanguage for any other language?
If not, what are the limitations?

6.2. COLLECTING ALTERNATIVE SOLUTIONS INTO A LIST

Consider the small knowledge base:

father(michael,cathy).
father(charles_gordon,michael).
father (jim,melody).

We can ask Prolog to display the names of all the fathers by issuing a query such as:
?- father(X,_), write(X), nl, fail.

That is: Find an X for which father (X, _) succeeds, print it, and backtrack to find
another one.

But what if, instead of displaying the names, we want to process them further
as a list? We are in a dilemma. In order to get all the names, the program must
backtrack. But in order to construct the list, it must use recursion, passing the
partially constructed list as an argument from one iteration to the next — which a
backtracking program cannot do.

One possibility would be to use assert and retract to implement roughly the
following algorithm:

1. Backtrack through all solutions of father(x,_), storing each value of X in a
separate fact in the knowledge base;

2. After all solutions have been tried, execute a recursive loop that retracts all the
stored clauses and gathers the information into a list.

Fortunately, we don’t have to go through all this. The built-in predicate findall
will gather the solutions to a query into a list without needing to perform asserts and
retracts.! Here’s an example:

'If your Prolog lacks findall, define it: £indall(V,Goal,L) :- bagof (V,Goal~Goal,L).

Sec. 6.2. Collecting Alternative Solutions into a List 155

?- findall(X,father(X,_),L).
L = [michael,charles_gordon, jim]

More generally, a query of the form
?- findall(Variable,Goal,List).

will instantiate List to the list of all instantiations of Variable that correspond to
solutions of Goal. You can then process this list any way you want to.

The first argument of £indall need not be a variable; it can be any term with
variables in it. The third argument will then be a list of instantiations of the first
argument, each one corresponding to a solution of the goal. For example:

?- findall(Parent+Child,father (Parent,Child),L).
L = [michael+cathy,charles_gordof+michael,jim+melody]

Here the plus sign (+) is, of course, simply a functor written between its arguments.

Exercise 6.2.1

Given the knowledge base

employee(’John Finnegan’,’secretary’,9500.00).

employee (’Robert Marks’,’administrative assistant’,12000.00).
employee(’Bill Knudsen’,’clerk-typist’,8250.00).
employee(’Mary Jones’,’section manager’,32000.00).
employee(’Alice Brewster’,’c.e.o.’,1250000.00).

what query (using findall) gives a list of all the employees’ names (and nothing else)?

Exercise 6.2.2

Using the same knowledge base as in the previous exercise, define a procedure named
average_salary(X) which will unify X with the average salary. To do this, first use
findall to collect all the salaries into a list; then work through the list recursively,
counting and summing the elements.

Exercise 6.2.3

Using the same knowledge base as in Exercise 6.2.1, show how to use findall to
- construct the following list:
[[’>John Finnegan’,9500.00],
[’Robert Marks’,12000.00],
[’Bill Knudsen’,8250.00],
[’Mary Jomnes’,32000.00],
[’Alice Brewster’,1250000.00]]

Exercise 6.2.4

Do the same thing as in the previous exercise, but this time collect into the list only the
employees whose salaries are above $10,000.
Hint: Use a compound goal as the second argument of findall.

156 Prolog as Its Own Metalanguage Chap. 6
6.3. USING bagof AND setof

A BAG is a mathematical object like a set except that the same element can occur in
it more than once. Obviously, £indall creates a bag, not a set, because the same
solution can appear in it more than once. Likewise, bagof creates a bag in the
form of a list containing all the solutions to a query; setof does the same thing
except that the list is sorted into alphabetical order and duplicates are removed. The
sorting operation takes extra time, but it can be worthwhile if it saves duplication of
subsequent work.

The big difference between bagof and setof on the one hand, and findall
on the other, concerns the way they handle uninstantiated variables in Goal that do
not occur in X. As you might expect, findall treats them as uninstantiated on every
pass. Thus,

?- findall(X,parent(X,Y),L).

means “Find everyone who is the parent of anybody” — Y need not have the same
value for each parent. However,

?- bagof (X,parent(X,Y),L).

means “Find all the values of X that go with some particular value of Y.” Other values
of Y will produce alternative solutions to bagof, not additional entries in the same
list. Here’s an example:

parent (michael,cathy).
parent(melody,cathy).
parent(greg,stephanie).
parent (crystal,stephanie).

?~ £indall(X,parent(X,Y),L).
X = _0001, Y = _0002, L= [michael,melody,greg,crystal]

?- bagof (X,parent(X,Y),L).
X = _0001, Y = cathy, L = [michael,melody] ;
X = 0001, Y = stephanie, L = [greg,crystall

?- setof(X,parent(X,Y),L).
X = 0001, Y = cathy, L = [melody,michael] ;
X = 0001, Y = stephanie, L = [crystal,greg]

Of course setof is just like bagof except that it sorts the list and removes duplicates
(if any).

In the terminology of formal logic, £indall treats Y as EXISTENTIALLY QUANTI-
FIED — that is, it looks for solutions that need not all involve the same value of ¥ —
while setof and bagof treat Y as something for which you want to find a specific
value.

There is another option. You can do this:

Sec. 6.4. Finding the Smallest, Largest, or “Best” Solution 157

?- bagof (X,Y parent(X,Y),L).
X = _000t, Y = _0002, L = [michael,melody,greg,crystall

Prefixing Y~ to the goal indicates that Y is to be treated as existentially quantified
within it.

More generally, if the second argument of setof or bagof is not Goal but
rather Term~Goal, then all the variables that occur in Term are treated as existentially
quantified in Goal.? As an extreme case, if you write bagof (V,Goal"Goal,L) then
all the variables in Goal will be existentially quantified and bagof will work exactly
like findall.

Finally, a word of warning: findall, bagof, and setof are relatively costly,
time-consuming operations. Don’t use them unless you actually need a list of so-
lutions; first, think about whether your problem could be solved by backtracking
through alternative solutions in the conventional manner.

Exercise 6.3.1

Go back to FAMILY.PL (Chapter 1), add a definition of ancestor, and show how to use
setof or bagof (not findall) to construct:

1. Alist of all the ancestors of Cathy, in the order in which they are found;

2. Alist of all the ancestors of Cathy, in alphabetical order;

3. Alist of terms of the form ancestor(X,Y) where X and Y are instantiated to an an-
cestor and a descendant, and have all possible values. Thatis: [ancestor(charles,
charles_gordon) ,ancestor(charles_gordon,michael)...] (not necessarily in
that order).

4. A list of people who are ancestors (without specifying who they are ancestors of).

6.4. FINDING THE SMALLEST, LARGEST, OR “BEST” SOLUTION

Quite often, you'll want to find the “best” of many alternative solutions to a query.
“Best” means different things in different situations, of course, but the underlying
idea is that of all the possible solutions, you want the one that surpasses all the others
according to some criterion. There are three main approaches:

e Use setof and exploit the built-in sorting process so that the “best” solution
comes out at the beginning (or perhaps the end) of the list;

e Use bagof or setof and then work through the list to pick out the solution you
want; or

e Search for the “best” solution directly, comparing each alternative against all
the others.

For concreteness, let’s work with the following rather boring knowledge base:

2In some versions of Cogent Prolog and LPA Prolog, Term can only be a variable; all the other
Prologs that we have tried allow it to be any term containing variables.

158 Prolog as lts Own Metalanguage Chap. 6

age(cathy,8).
age(sharon,4).
age(aaron,3).

age (stephanie,7).
age(danielle,4).

Which child is the youngest? We'll try the first and third strategies, leaving the
second one as an exercise.

It's easy to make setof give us the age of the youngest child. Consider these
queries:

?- setof(4,N"age(N,A),L).
L= [3’4’7’8]

?- setof(A,N"age(N,A), [Youngest|_]).
Youngest = 3

The first query retrieves a sorted list of the children’s ages; the second query refrieves
only the first element of that list. So far so good.

Getting the name of the youngest child involves some subtlety. Recall that the
first argument of setof, bagof, or findall need not be a variable; it can be a term
containing variables. In particular, we can get a list of children’s names together
with their ages in any of the following ways (among others):

?- setof ([A,N],N“age(N,4),L).
L = [[38,aaron], [4,sharon], [4,danielle], [7,sharon] » [8,cathyl]

?- setof (£(A,N),N"age(N,4),L).
L= [f(3,aa_ron),f(4,sha1'on),:f(4,danie11e),f(7,sharon),f(8,cathy)]

?- setof (A+N,N‘age (N,A),L).
L = [3+aaron,4+sharon,4+danielle,7+sharon, 8+cathy]

In the first query we ask for each solution to be expressed as a 2-element list containing
A and N; in the second query we ask for a term £ (4,N); and in the third query we ask
for a term A+N.

Notice why 3+aaron comes out as the first element. When setof compares two
terms to decide which one should come first, it looks first at the principal functor,
and then at the arguments beginning with the first. Numbers are compared by
numeric value, and atoms are compared by alphabetical order. Accordingly, since
all the terms in the list have the same functor (+), and all have numbers as the first
argument, the one with the smallest number comes out first.

You don’thave to use setof. Here is a purely logical query that solves the same
problem:

?- age(Youngest,Agel), \+ (age(_,Age2), Age2 < Agel).
Youngest = aaron

Think for a moment abouthow the backtracking works. Prolog will try every possible
solution for age (Youngest, Age1) until it gets one for which it can’t find a younger

Sec. 6.5. Intensional and Extensional Queries 159

child. That means that every entry in the knowledge base is compared with all of
the others; if there are IV children, there are N comparisons.

Is this inefficient? Maybe; setof can perform its sorting with only N log, N
comparisons. However, if N is fairly small, it’s probably faster to do more com-
parisons and avoid constructing lists, because list construction is a fairly slow and
expensive operation.

Exercise 6.4.1

Show how to use setof to find out which child’s name comes first in alphabetical order.

Exercise 6.4.2

How would you find out which child’s name comes last in alphabetical order?

Exercise 6.4.3
What would be the result of this query? Predict the result before trying it.
?- setof (N+A,N~age(N,A),L).

Exercise 6.4.4

Define a predicate £ind_six(X) that will instantiate X to the name of the child whose
age is closest to 6.
Hint: Let the second argument of setof be a compound goal such as (age(N,A), Diff
is abs(6-A4)), then sort on Diff.

Exercise 6.4.5
Rewrite £ind_six so that instead of using setof, it uses a purely logical query. Call it
logical_find_six.

Exercise 6.4.6 (small project)

On your Prolog system, compare the time taken to find the youngest child by using
setof to the time taken by using a purely logical query. Try larger knowledge bases.
How large does the knowledge base need to be in order for setof to be the faster
technique?

6.5. INTENSIONAL AND EXTENSIONAL QUERIES

We know how to state, in Prolog, facts about individuals and also generalizations:

dog(fido). “Fido is a dog.”
animal(X) :- dog(X). “Dogs are animals.”

We also know how to ask questions about individuals:
?- 'dog(£ido). “Is Fido a dog?”

How can we ask a question such as “Are dogs animals?” There are two things this
question might mean:

160 Prolog as Its Own Metalanguage Chap. 6

(1) Is there a rule or set of rules by means of which all dogs can be proven to be
animals?

(2) Regardless of what the rules say, is it the case that all of the dogs actually listed
in the knowledge base are in fact animals?

We can call (1) and (2) the INTENSIONAL and EXTENSIONAL interpretations, respec-
tively, of the question “Are dogs animals?” Of these, (1) is primarily a question
about the contents of the rule set, whereas (2) asks Prolog to make a generalization
about a set of known individuals. Of course, if (1) is true, (2) will always be true also,
though the converse is not the case.

We will pursue (2) here. Intuitively, we want to say that “All dogs are animals”
is true if (a) there is at least one dog in the knowledge base, and (b) there is no dog
in the knowledge base that is not an animal. We insist that there must be at least one
dog in the knowledge base so that, for instance, “Snails are monkeys” does not come
out true merely because there are no snails in the knowledge base.

We want to define a predicate for_all(Goald,GoalB) that succeeds if all of
the instantiations that make GoalA true also make GoalB true. For the results to be
meaningful, Goald and GoalB must of course share at least one variable. We could
then ask “Are dogs animals?” with the query:

7- for_all(dog(X),animal(X)).
One way to define for_all is as follows:

% for_all(Goall,GoalB)
4 Succeeds if all solutions for GoalA also satisfy GoalB,
% and there is at least one solution for both goals.

for_all(GoalA,GoalB) :-

\+ (call(Goald), \+ call(GoalB)), %1
call(Goald), %2
[%3

The nested negations in line 1 may be confusing. Line 1 fails if the compound goal
(call(Goald), \+ call(GoalB))

succeeds, and vice versa. This compound goal, in turn, succeeds if there is a way to
make Goald succeed (instantiating some variables shared with GoalB in the process)
such that GoalB then fails. If we find a dog that is not an animal, the compound goal
succeeds and line 1 fails. Otherwise, line 1 succeeds.

If line 1 succeeds, line 2 then checks that there was indeed at least one dog in
the knowledge base. We cannot reverse the order of lines 1 and 2 because line 2
instantiates some variables that must be uninstantiated in line 1. The cut in line 3
ensures that we do not generate spurious alternatives by making line 2 succeed in
different ways.

Exercise 6.5.1

Given the knowledge base

Sec.6.6. Operator Definitions 161

dog(£fido).
dog(rover).
dog(X) :- bulldog(X).

bulldog(bucephalus).

animal(X) :- dog(X).

animal (felix).

is it true that all dogs are animals? That all animals are dogs? That all bulldogs are
animals? That all dogs are bulldogs? Give the query (using for_all) that you would
use to make each of these tests.

6.6. OPERATOR DEFINITIONS

Most Prolog functors are written immediately in front of a parenthesized argument
list: functor(argl,arg2). Functors that can be written in other positions are called
OPERATORS. For example, the structure +(2,3) can be written 2+3 because its functor,
+, is an infix operator.

Do not confuse operators with operations. Some operators denote arithmetic
operations (+ - * /), but other operators serve entirely different purposes. In fact,
any Prolog functor can be declared to be an operator, and doing this changes only
its syntax, not its meaning.

To create an operator, you must specify the operator’s POSITION, PRECEDENCE,
and ASSOCIATIVITY. Let’s deal with position first. An INFIX operator comes between
its two arguments, like + in 2+3; a PREFIX operator comes before its one argument,
without parentheses, like \+ in \+ dog{felix); and a POSTFIX operator comes after
its one argument.

Precedence determines how expressions are interpreted when there are no
parentheses to show how to group them. For example, 2+3*4 is interpreted as
2+(3*4), not (2+3)*4, because + has higher precedence than *. The operator with
lower precedence applies to a smaller part of the expression. Precedences are ex-
pressed as numbers between 1 and 1200 (between 1 and 256 in some older imple-
mentations). Table 6.1 shows the usual set of built-in operators.

Associativity determines what happens when several operators of the same
precedence occur in succession without parentheses: should 2+3+4 be interpreted as
(2+3)+4 (left-associative), or as 2+(3+4) (right-associative), or simply disallowed?

Position and associativity are specified by the symbols £x, £y, x£, yf, xfx, xfy,
and yfx (Table 6.2). Here £ stands for the position of the operator itself; x stands for an
argument that does not allow associativity; and y stands for an associative argument.
Thus, £x designates a prefix operator with one argument and no associativity; yfx
designates an infix operator that is associative on the left but not the right.

A complete operator definition looks like this:

?- op(100,xfx,is_father_of).

This query tells Prolog to allow the functor is_father_of to be written between its
arguments, with a precedence of 100 and no associativity. After executing this query,
Prolog will accept facts and rules such as:

162

Prolog as lts Own Metalanguage

TABLE 6.1 COMMONLY PREDEFINED PROLOG OPERATORS.
For the official ISO set, see Appendix A.

Chap. 6

Priority Specifier ~Operators
1200 xfx - -
1200 fx - 7~
1100 xfy
1050 xfy >
1000 xfy |,
900 £y \+ (or, in some Prologs, not)
700 xfx = \= == \== @< 0=< &> Q= isg =:= =\= < =< > >= =,,
500 yix + -
400 yix * / // mod
200 xfy -
200 fy -

TABLE 6.2 OPERATOR SYNTAX SPECIFIERS.

Specifier Meaning

fx Prefix, not associative

fy Prefix, right-associative (like \+)

xf Postfix, not associative

yi Postfix, left-associative

xfx Infix, not associative (like =)

zfy Infix, right-associative (like the comma in compound goals)
yix Infix, left-associative (like +)

michael is_father_of cathy.

X is_father_of Y

and queries such as:

:- male(X), parent(X,Y).

7~ X is_father_of cathy.

X =
yes

michael

Notice that the op declaration is a query, not a fact. If you include it as a line in your
program, it must begin with “: -, like this:

:~ op(100,xfx,is_father_of).

Then it will affect the reading of all subsequent facts, rules, and embedded queries as
the Prolog system consults your program. In fact, it will affect all input and output
performed by read, write, consult, and any other procedures that recognize Prolog
syntax. In virtually all Prologs, the op declaration will stay in effect until the end of
your Prolog session, although the ISO standard does not require this. Naturally, you
can also execute an op declaration as a subgoal within one of your procedures, if you
wish.

Sec. 6.7. Giving Meaning to Operators 163

Finally, note that operators composed entirely of the special characters
#8&x+- ./ :<=>70" "\

have some special properties. First, unlike most other atoms that contain nonal-
phanumeric characters, they need not be written in quotes. Second, they need not
be separated from their arguments by spaces (unless, of course, their arguments
also consist of those special characters). For example, X>=Y is equivalent to X >= Y
because > and = are special characters, but Xmod3 is not equivalent to X mod 3.

Like any other functor, an operator can have different meanings in different
contexts. For example, / denotes division in arithmetic expressions, but in the
argument of abolish elsewhere it joins the functor and arity of a predicate that is
being referred to (e.g., abolish(£££/2)), and you could use it for still other purposes
anywhere you wish.

Exercise 6.6.1

Construct an appropriate op declaration so that
likes(kermit,piggy) .

can be written

kermit likes piggy-

Demonstrate that your op declaration affects the behavior of write.

Exercise 6.6.2

In op declarations, why isn’t y£y a possible specifier of precedence and position?

Exercise 6.6.3

By redefining built-in operators, make Prolog arithmetic expressions obey the “right-to-
leftrule” of the programming language APL. That is, change the syntax of +, -, *, and /
so that all of them have the same precedence and expressions are evaluated from right
to left; for example, 2+3%4+5/6~7 should be interpreted as 2+(3%(4+(5/(6-7)))). To
verify that your redefinitions have had the desired effect, try the following queries:

7~ X is 2#3+4. (should give 14, not 10)

?- X is 1.0/2.5-6.5. (should give -0.25, not -6.1)

6.7. GIVING MEANING TO OPERATORS

Operator definitions define only the syntax of the operators. The meaning, or se-
mantics, of an operator is up to the programmer.

In the past, some Prologs have used the ampersand (&) rather than the comma
to join elements of compound goals. This has the great advantage that compound
goals do not look like argument lists; the query

7~ call(p(a) & q(a) & r(a)).

clearly invokes call with only one argument. In ordinary Prolog, we have to use
extra parentheses to get the same effect, like this:

7~ call((p(a), g(a), r(a))).

164 Prolog as lts Own Metalanguage Chap. 6

because, without the extra parentheses, call would be taken as having three argu-
ments.

We can define the ampersand to work this way even in ordinary Prolog. First,
let’s define its syntax. We want & to be an infix operator with slightly lower prece-
dence than the comma, so that f (a&b,c) will mean £ ((a&b) »¢), not £(a&(b,c)).
Further, as we will see shortly, & should be right-associative. In most Prologs, then,
the appropriate operator definition is:

:- op(950,xfy,&).

Next we need to tell Prolog how to solve a goal that contains ampersands. Ob-
viously, GoalA & GoalB should succeed if GoalA succeeds and then GoalB succeeds
with the same instantiations. That is:

Goalh & GoalB :- call{GoaldA), call(GoalB).
This is just an ordinary Prolog rule. It could equally well be written as:
*%’(GoalA,GoalB) :- call(GoaldA), call(GoalB).

Because & is right-associative, this rule can in fact handle an unlimited number of
goals joined by ampersands. Suppose we issue the query:

?- urite(one) & write(two) & write(three).

Because of the right-associativity, this goal is equivalent to:

?- write(one) & (write(two) & write(three)).

This unifies with the head of the rule defining &, with the instantiations:

Goall
GoalB

write(one)
(write(two) & write(three))

f

]

The new goals are call(Goald), which is satisfied by writing one on the screen, and
call(GoalB), which invokes the rule for & recursively. File AMPERS.PL (Figure 6.1)
illustrates the whole thing.

Exercise 6.7.1

Show how to define the operators and and or to mean “and” and “or” respectively, so
that you will be able to write clauses like this:

green(X) :- (plant(X) and photosynthetic(X)) or frog(X).

Demonstrate that your solution works correctly.

Exercise 6.7.2

What happens if there is a cut in one of the subgoals that are joined by ampersands in
AMPERS PL? Why?

Sec. 6.8. Prolog in Prolog 165

% File AMPERS.PL
% How to make the ampersand mean "and" in Prolog

% Syntax of &
i~ op(950,xfy,&).

% Semantics of &
GoalA & GoalB :- call(Goalld), call(GoalB).

% Demonstration knowledge base

parent (michael,cathy).

parent (melody,cathy).

parent (charles_gordon,michael).
parent (hazel,michael).

parent (jim,melody) .

parent (eleanor ,melody).

grandparent(X,Y) :- parent(Z,Y) & parent(X,Z).
only_child(X} :- parent(P,X) & \+ (parent(P,Z) & Z\==X).

test :- omly_child(C), write(C), write(’ is an omly child’), nl.

Figure 6.1 Example of defining an operator as a Prolog predicate.

6.8. PROLOG IN PROLOG

Our definition of & suggests a strategy for rewriting Prolog’s whole inference engine
in Prolog and thus developing a customized version of the language. Recall that
the predicate clause (Head,Body) can retrieve any of the clauses in the knowledge
base, or at least any that are declared dynamic;® it does this by trying to unify Head
with the head of a clause and Body with the body of that clause (or with true if the
clause is a fact). Alternative clauses are obtained as multiple solutions to clause
upon backtracking.

The body of a rule is usually a compound goal, that is, a structure held together
by right-associative commas that work just like the ampersands above. Thus, given
the rule:

£(0 - g, (X, i(X), j&X).
the query

?~ clause(f(abc),Body).

will instantiate Body to:

g(abe), h(abe), i(abc), jlabe)

3Some Prologs lack this restriction.

166 Prolog as Its Own Metalanguage

% File INTERP.PL
. Metainterpreter for Prolog

% interpret(+Goal)
% Executes Goal.

interpret(true) :~ !.
interpret((Goald,GoalB)) :- !,
interpret(Goald),
interpret(GoalB) .
interpret(Goal) :- clause(Goal,Body),
interpret(Body) .

% Test knowledge base (note the dynamic declaratioms!)

:~ dynamic(parent/2).

parent (michael,cathy).

parent (melody,cathy).

parent (charles_gordon,michael).
parent (hazel,michael).

parent (jim,melody).

parent (eleanor ,melody).

:= dynamic(grandparent/2).
grandparent(X,Y) :- parent(Z,Y), parent(X,Z).

test :~ interpret(grandparent(A,B)), write([A,B]), nl, fail.
% prints out all solutions

Figure 6.2 The Prolog inference engine expressed in Prolog.

which is equivalent to:

g(abc), (h(abe), (i(abc), jlabe)))

Chap. 6

To execute this goal, we work through it in the same manner as with the ampersands
in AMPERS.PL. We can define interpret (which takes a goal as an argument and
executes it) as shown in Figure 6.2. Then, to use interpret, we simply type, for

example,

7- interpret(grandparent(X,Y)). instead of ?- grandparent(X,Y).

This algorithm is from Clocksin and Mellish (1984:177). The cuts are green:
They save steps but do not affect the logic of the program. Notice that call is not

used; every successful goal ends up as an invocation of interpret(true).

Sec. 6.9. Extending the Inference Engine 167

This is a METAINTERPRETER or METACIRCULAR INTERPRETER for Prolog. It is, of
course, slower than the original Prolog interpreter under which it runs, but the speed
difference is not dramatic because the original interpreter is still doing nearly all the
work. More importantly, it does not recognize built-in predicates because there are
no clauses for them, and it offers no straightforward way to perform cuts. These
features can, of course, be added by writing a more complex metainterpreter.

Metainterpreters are useful because they can be modified to interpret languages
other than the Prolog in which they are written. With minor changes, we could
make our metainterpreter use ampersands rather than commas to form compound
goals, or even change its inference strategy entirely, for example by making it try to
solve each goal using facts before trying any rules. Even when interpreting straight
Prolog, a metainterpreter can keep records of the steps of the computation, assist
with debugging, and even check for loops.

Exercise 6.8.1

On your Prolog system, does clause have access to all clauses or only the ones that are
declared dynamic? Experiment to find out.

Exercise 6.8.2

Get interpret working on your machine. Demonstrate that it correctly performs the
computations used in FAMILY.PL (Chapter 1).

Exercise 6.8.3
Add clauses to interpret to handle negation (\+) and equality (=). Using these exten-

sions, add the definition of “sibling” to FAMILY.PL and show that interpret processes
it correctly.

Exercise 6.8.4
Extend interpret to handle ordinary built-in predicates (e.g., write) by trying to ex-
ecute each subgoal via call if no clauses for it can be found. Show that queries such
as
?- interpret((father (X, cathy), write(X))).
are handled correctly. What happens to cuts? Why?

6.9. EXTENDING THE INFERENCE ENGINE

Another, less radical, way to extend Prolog is to add another inference strategy on top
of the existing inference engine. Such a system does not require a metainterpreter.
It processes a goal by trying to execute it with call and then trying another strategy
if call did not work. Thus, conventional Prolog goals are processed in the normal
way, and other types of goals can be processed as well.

For a concrete example, consider how to express, in Prolog, the fact that all
dogs are canines and all canines are dogs. If we use two rules,

canine(X) :- dog(X).
dog{X) :- canine(X).

168 Prolog as lis Own Metalanguage Chap. 6

we will get loops because each rule will call the other. A different inference strategy
is needed.

First we need to record the fact that canine (X) and dog (X} stand in a bicondi-
tional relation. We could use a predicate called bicond and put the following fact in
the knowledge base:

bicond(canine (X),dog(X)).

A more elegant approach is possible. Instead of bicond, let’s call the predicate
‘=:-’ (an operator similar to ‘:~’, but symmetrical). For this we need the operator
definition:

:- op(950,xfx,’~:-2).

We can then relate canine and dog with the fact:

canine(X) -:- dog(X).

We will call this a BICONDITIONAL RULE. Neither side of it can be a compound goal.
File BICOND.PL (Figure 6.3) defines a predicate prove which is like call except
that it can also use biconditional rules. Its strategy is as follows: First see if the goal
can be satisfied with call. If not, see if it matches one side of a biconditional rule,
and if so, call the other side of that rule.
To see that we get the correct results, consider the following knowledge base
and queries:

dog(fido).
canine(rolf).

dog(X) -:- canine(X).
?- dog(X).

X = fido

?- canine(X).
X = rolf

?- prove(dog(X)).
X = fido ;
X = rolf

?- prove(canine(X)).

X = rolf ;

X = fido

Queries with prove recognize biconditionals, while ordinary queries do not. Bicon-
ditionals do not cause loops because prove does not cail itself.

Unfortunately, prove has its limitations. Because it is not recursive, it does not
recognize that biconditionality is transitive. The knowledge base

£(X) -:- g(X).
g(X) -:- n{X.

Sec. 6.9. Extending the Inference Engine 169

% File BICOND.PL
% Inference engine for biconditionals in Prolog

% The -:- operator joins the two sides of a biconditional rule.

i~ op(950,xfx,’-:-2).

% Inference engine for biconditionals

prove(Goal) :- call(Goal).

prove(Goald) :- (Goald -:- GoalB),
call(GoalB).

prove(GoalB) :- (Goald -:- GoalB),
call(Goald).

% Sample knowledge base

dog(fido) .

canine (rolf).

dog(X) -:- canine(X).

test :- prove(dog(X)), write(X), nl, fail.

% prints all solutioms

Figure 6.3 A rudimentary inference engine for biconditionals.

179 Prolog as Its Own Metalanguage Chap. 6

does not enable the computer to infer £(fido) from h(fido). If we make prove
recursive in the straightforward way — so that it invokes itself instead of invoking
call — we get transitivity, but we also reintroduce loops. A more sophisticated
version of prove might keep a record of the biconditional rules that it has used so
that it can chain rules together without using the same rule more than once.

Exercise 6.9.1

Implement an inference engine that can handle symmetric 2-place predicates (those
whose arguments can be interchanged) without looping. Put the functor symmetric in
front of each fact that is to have the symmetric property, and let symmetric be a prefix
operator. For example:
symmetric married(john,mary).
symmetric married(melody,michael).

?- prove(married(mary,john)).
yes

?- prove(married(john,mary)).
yes

?- prove(married(michael,Who)).
Who = melody

?- prove(married(abc,xyz)).
no

6.10. PERSONALIZING THE USER INTERFACE

Not only the inference engine, but also the top-level user interface of Prolog can be
customized. In the typical Prolog top level, the computer types:

=

and the user replies by typing a query. Some Prologs also let the user type rules and
facts which are added to the knowledge base.
File TOPLEVEL.PL (Figure 6.4) defines a top level whose dialogues with the

user look like this:
Type a query: father (X, cathy).
Solution found: father (michael, cathy)

Look for another? (Y/N): n

Type a query: father(joe,cathy).
No (more) solutions

Type a query: parent (X,Y).
Solution found: parent (michael,cathy)
Look for amother? (Y/N): y

Sec. 6.10. Personalizing the User Interface

% File TOPLEVEL.PL
% A customized user interface for Prolog

% top_level
% Starts the user interface.

top_level :- repeat,
nl,
write(’Type a query:),
read(Goal),
find_solutions(Goal),
fail.

% find_solutions(+Goal)
% Satisfies Goal, displays it with instamtiations,
% and optionally backtracks to find another solution.

find_solutions(Goal) :-
call(Goal),
write(’Solution found: 2y,
write(Goal),
nl,
write(’Look for amother? (Y/N): ?),
get(Char), nl,
(Char = 78 ; Char = 110), % Nor n
1

find_solutions{() :-
write(’No (more) solutioms’),
nl.

% Demonstration knowledge base
father (michael,cathy).
mother (melody,cathy).

parent(X,Y) :- father(X,Y).
parent (X,¥Y) :- mother(X,Y).

Figure 6.4 A user-friendly top level for Prolog.

171

172 Prolog as Its Own Metalanguage Chap. 6

Solution found: parent (melody,cathy)
Look for another? (Y/N): y
No (more) solutions

This is just like the usual Prolog top level except that the messages are much more
explicit, and answers are reported by displaying the query with the variable values
filled in. All Prolog queries are acceptable — not only queries about the knowledge
base but also calls to built-in predicates such as consult.

The code defining this top level is only 18 lines long. The procedure top_level
is an endless repeat—fail loop that accepts queries from the keyboard and passes
them to £ind_solutions. (Note by the way that the name top_level has no special
significance. This procedure becomes the top level of the Prolog environment when
you start it by typing ‘?- top_level.’)

The procedure find_solutions has two clauses. The first clause finds a so-
lution, prints it, and asks the user whether to look for others. If the user types N
or n (for “no”), find_solutions executes a cut, and control returns to top_level.
Otherwise, find_solutions backiracks. If no further solutions can be found and the
cut has not been executed, control passes to the second clause and the message “No
{more) solutions” is displayed.

How do you get out of top_level? Simple: type ‘halt.’ to leave Prolog, just
as if you were using the ordinary top level.

A customized top level can make Prolog much more user-friendly. We have
found it useful to introduce beginners to Prolog with a menu-driven user interface
that lets them display the knowledge base, add or remove clauses, and execute
queries. In this way the use of a file editor is avoided. Moreover, a customized
top level can be combined with an enhanced inference engine to turn Prolog into a
powerful knowledge engineering system.

Exercise 6.10.1

Get top_level working on your computer. Then modify it so that it uses setof to obtain
and display all the solutions at once, rather than asking the user whether to backtrack.
Call the modified version top_level_2.

6.11. BIBLIOGRAPHICAL NOTES

Sterling and Shapiro (1994) and O’Keefe (1990) explore the use of Prolog as its own
metalanguage in considerable detail. O’Keefe gives metainterpreters that handle
cuts correctly (as well as critiques of a lot of simple metainterpreters).

Marcus (1986:213-220) shows how to extend Prolog, via operator definitions, to
comprise a user-friendly database language. Although not adequate for full natural
language processing, suitable operator definitions can make Prolog look a great deal
more like English.

Chapter 7

Advanced Techniques

7.1. STRUCTURES AS TREES

So far, we've looked at Prolog structures purely in terms of their written represen-
tation; for example, we think of £(a,b) as something written with an £, a pair of
parentheses, an a, a comma, and a b.

Now let’s distinguish the written representation from the structure itself. The
commas and parentheses are not really parts of the structure; they are just notations
to show how the parts fit together. A Prolog structure is really, on a deeper level, a
tree-like object. For example, the structure £(g(h,i),j(k,1)) canbe represented by
this diagram:

f

/\
AN

The crucial concept here is that the structure expresses a relation between a functor
and a series of arguments. Tree diagrams like this one are very handy for figuring
out whether two structures will unify, and, if so, what the result will be.

Prolog clauses and goals are structures, too. The clause

a :-b, ¢, d.

173

174 Advanced Techniques Chap. 7

is really
a - (b, (¢,).

or rather:

O
N
b 3
N
c d

Knowing this structure is crucial if you want to write a Prolog program that processes

other Prolog programs.
Notice that here the comma is a functor, notjust a notational device. Recall that

there are three uses for commas in Prolog:

e As an infix operator that means “and,” for joining goals together (as in the
clausea :- b, ¢, dabove);

¢ As an argument separator in structures (as in £ (a, b, c));
© As an element separator in lists (as in [a,b,c]).

The first kind of comma is a functor; the latter two kinds are not and do not show up
in tree diagrams.
Exercise 7.1.1

Draw tree diagrams of the following structures:
asdf(ai,a2,a3,ad) glx(y,z,) ,q(p,r(e(£)))) 2+3%445
Hint: Recall that + and * are functors that are written between their arguments.

Exercise 7.1.2
Draw tree diagrams of the following two structures and then of the structure formed by
unifying them:
a(b,X,c(d,X,e)) a(Y,p,c(d,Z,e))

Exercise 7.1.3

Demonstrate all three uses of commas in a single Prolog clause. Label each of the
commas to indicate its function.

Exercise 7.1.4 (project)

Define a predicate display_tree that will display any Prolog structure as a tree diagram.
(How you display the tree will depend on what tools are available to you; you can use
either graphics or typewritten characters.)

Sec. 7.2. Lists as Structures 175
7.2. LISTS AS STRUCTURES

Lists are structures, too. Specifically, a list is a tree that branches only on the right,
like this:

c (1
In functor-argument notation, this structure would be written . (a, . (b, . (c, {1))),
but we normally write [a,b,c] instead. The two are equivalent; they are two
notations for the same thing. Note some further equivalences:

. (a, [1) = [a]
(a,.(b,.(c, [1))) = [a,b,c]
. {(a,b) = [alb] % an improper list

Aa,.(b,.lc,)))

{a,b,cld] % another improper list

Every nonempty list has the dot (.) as its principal functor. Note however that the
empty list [] is not a structure and does not contain the dot functor.

Now look again at how lists branch. Each dot functor has two arguments: Its
first argument is one element, and its second argument is another list. That is:

Every list consists of an element plus another list or [1.

This is the concept that makes a list what it is. If the whole thing does not end in []
it is called an IMPROPER LIST (like a dotted pair in Lisp).

The big advantage of lists over multiargument structures is that you can process
a list without knowing how many elements it has. Any nonempty list will unify with
. (X,Y) (more commonly written [X|Y]), regardless of the number of elements. You
can process the element X and then recursively pick apart the list Y the same way
you did the original list.

List-like structures can be constructed with any two-argument functor; for
example, f (a,f(b,f(c, [1))) is a list-like structure whose principal functor happens
to be f rather than the dot. Infix operators are particularly useful for this purpose.
For example, if you are accumulating a sequence of numbers that will eventually be
summed, it may be desirable to link them together with the functor + rather than the

usual list structure, thus:
1+2
(1+2)+3 orsimply 1+2+3

((1+2)+3)+4) orsimply 1+2+3+4

When you've constructed the whole sequence, you can find the sum by putting the
sequence on the right-hand side of is.

176 Advanced Techniques Chap. 7

Notice that because + is left-associative, this particular list is a free that branches
on the left rather than on the right. Nonetheless, you can pick off one element at a
time, just as you would with a list: 2+3+4+5 unifies with X+Y to give X=2+3+4 and
Y=5.
Exercise 7.2.1

Draw tree diagrams of each of the following terms:

[a,b,c,d] [a,b,cld] f(a,f(b,£(c,d))) a+b+g+d
Exercise 7.2.2

Demeonstrate, using the computer, that [a,b] = . (a, . (b, [1)).

Exercise 7.2.3
What is the result of the following query? Explain.
?- [a,b,c] =.. What.

Exercise 7.2.4

What is the most concise way of writing [x,y! [11?

Exercise 7.2.5
Write . (. (a,.(b,[1)),.(c,[1)) in ordinary list notation (with square brackets and
commas) and draw a tree diagram of it.

Exercise 7.2.6

Define a predicate improper_1list/1 that will succeed if its argument is an improper
list, and fail otherwise.

7.3. HOW TO SEARCH OR PROCESS ANY STRUCTURE

Sometimes you’ll need to write a procedure that accepts any Prolog term whatsoever,
and searches or processes it in some way, looking at every functor and argument
throughout. This isn’t hard to do. The basic strategy is:

o If the term is an atom, number, or variable, use it as it is; there’s no need to take
it apart further.
o If the term is a structure, then:
Convert it into a list using ‘=. .”;
Recursively process all the elements of the list, creating a new list;
Convert the resulting list back into a structure, again using ‘=, .".
Recall that ‘=. .’ converts any structure into a kst consisting of its functor and argu-
ments, e.g., £(a,b) =.. [f,a,b]. This works even for lists, because a list is merely
a term with the dot as its principal functor, and ‘=. .’ recognizes it as such.

File REWRITE.PL (Figure 7.1) shows how to search any term and make a copy
of it in which every occurrence of a within it is changed to b, like this:

Sec. 7.4. Internal Representation of Data 177

7- rewrite_term(f(a, [b,a(X),d]),What).
What = £(b, [b,b(X),d])

This is, of course, an oversimplified example; in real life there’s not much point to
changing every a to b, but you could use a procedure like this as the basis of a Prolog
macro system, to implement extensions to the Prolog language.

Exercise 7.3.1

Modify rewrite_term so that it changes a’s to b’s only when the a’s are atoms, not
functors. (Simple.)

Exercise 7.3.2

Define a predicate count_a/2 that will simply search for occurrences of a (as atom or
functor) in any term and report how many it found, thus:

?- count_a(f(a,[b,a(X),d]),What).

What = 2

Note that you don't have to make a copy of the term — just keep a count of a’s.

Exercise 7.3.3 (small project)

Develop an alternative version of rewrite_term that uses functox/3 and arg/3 instead
of '=..”. On your system, is it faster or slower than the original?

7.4. INTERNAL REPRESENTATION OF DATA

Prolog handles all memory management dynamically. That is, it doesn’t set aside
space for all the constants and variables at the beginning of the program; instead, it
allocates space as needed while the program runs. That allows you to create large
objects, such as lists, without declaring them in advance. But it also means that there
is no way to predict what memory location a particular item will occupy, and it is
not possible to associate data items with fixed addresses as is done in conventional
languages. Instead, all memory access is done through POINTERS, which are memory
locations that store the addresses of other memory locations.

Every Prolog structure is a network of CONS CELLS, so named because of the
function CONS (“construct”) that creates cons cells in Lisp. Each cons cell contains
a pointer to the functor, plus pointers to each of the arguments (Figure 7.2). Atoms
reside in the SYMBOL TABLE; variables and numbers are represented by special codes
in the cell itself.

Crucially, if the same atom occurs in more than one place, only one copy of it
need exist because many pointers can point to it. Thus, a program that contains the
term

asdfasdf (asdfasdf,asdfasdf,asdfasdf,asdfasdf,asdfasdf,asdfasdf)

actually contains only one copy of asdfasdf.

Lists are a special case. If the dot functor worked as we described it in the
previous section, the internal representation of the list [a,b,¢] would be as shown
in Figure 7.3(a). In fact, however, most Prolog implementations treat lists specially

178 Advanced Techniques

% File REWRITE.PL
% Example of searching am arbitrary term using =..

% rewrite(X,Y)
% Tells rewrite_term what to rewrite.

rewvrite(a,b) :- !. Y% change all a to b
rewrite(X,X). % leave everything else alone

% rewrite_term(+Terml,-Term2)
% Copies Terml changing every atom or functor ’a’ to ’b’
% (using rewrite/2 above).

rewrite_term(X,X) :~
var(X), % don’t alter uninstantiated variables
[}

revrite_term(X,Y) :-
atomic(X), 7 ’atomic’ means atom or number
[}
A

rewrite(X,Y).

rewrite_term(X,Y) :-

X =.. IList, % convert structures to lists
rewrite_aux(XList,YList), ¥ process them
Y =.. YList. % convert back to structures

rewrite_aux([J,[1).
rowrite_aux{[First|Rest], [NewFirst|NewRest]) :-

rewrite_term(First,NewFirst), % note recursion here
revrite_aux(Rest,NewRest).

Figure 7.1 Example of searching an arbitrary term.

Chap. 7

Sec. 7.4. Internal Representation of Data 179

Symbol
table

' alpha

— O R IR F» e o

Figure 7.2 Internal representation of the term £ (alpha(bbb,c),alpha,d).

and omit the pointers to the dot functor, so that they actually use the more com-
pact representation in Figure 7.3(b). The unifier knows about the dot functor and
regenerates it whenever needed so that, as far as the programmer is concerned, it
always seems to be there, except that it doesn’t take up any space. Each cell contains
a TAG (not shown) that indicates whether it is a structure or a list element; tags keep
Figure 7.3(b) from being interpreted as a(b(c(d, [1))).

Either way, the distinctive thing about lists is that the cons cells are arranged in
a linear chain. Only the first element of the list can be accessed in a single step. All
subsequent elements are found by following a chain of pointers, a process known as
“CDRing down the list” (again, CDR, pronounced “could-er,” is the name of a Lisp
function). It thus takes five times as long to reach the fifth element of the list as to
reach the first element. This leads to a programming maxim:

Work on lists at the beginning, not at the end.

It is also a good idea to “avoid consing,” ie., avoid creating new lists and
structures unnecessarily. Allocating new cons cells requires time as well as memory.
Rather than transforming [a,b,¢,d] into [a,b,c], unify [a,b,c,d] with [X,Y,Z]_],
if that will do the same job, or store the list elements in the opposite order.

As a Prolog program runs, it allocates many cons cells, which are obtained from
an unused memory area known as the HEAP or GLOBAL STACK. Just as frequently, it
releases cons cells that are no longer needed. Periodically, it must perform GARBAGE
COLLECTION and gather up the unused cons cells, returning them to the heap for
future use. In Prolog, unlike Lisp, some garbage collection can be performed upon
exit from each procedure, since its variable instantiations no longer exist. Some

180 Advanced Techniques

(a) Full representation:

Chap. 7

(b) Compact representation:

i

Figure 7.3 Internal representation of the list [a,b,¢].

1

Sec.7.5. Simulating Arrays in Proiog 181

implementations take advantage of this fact, and some wait until the heap is empty
before performing any garbage collection. In many Prologs, the built-in predicate gc
performs garbage collection when you call it.

Exercise 7.4.1

Sketch the internal representations of each of the following structures:
a(b,c,d) a(b(c),d(e)) asdfasdf (asdfasdf,asdfasdf)

Exercise 7.4.2

Which takes up more space, [a,b,c] or a+b+c+[]17 Or are they the same size? Explain.

Exercise 7.4.3

Assuming that each pointer occupies 4 bytes, how much space is saved by representing
[a,b,c,d,e,£] the compact way instead of the original way?

Exercise 7.4.4

Think about the circumstances under which atoms get added to the symbol table. .
Clearly, atoms that occur in the program itself are placed in the symbol table when

the program is initially consulted or compiled. Some predicates, such as read, can

introduce new atoms at run time. What other predicates can do this?

7.5. SIMULATING ARRAYS IN PROLOG

Lists in Prolog or Lisp are quite different from arrays in other languages, because all
the elements of an array have locations known in advance, and any element of an
array can be reached as quickly as any other.

Prolog has no arrays, but it has two reasonable substitutes. Instead of using an
array as a lookup table, you can use a set of facts, as in this table of prime numbers:

nthprime(1,2).
nthprime (2,3).
nthprime(3,5).
nthprime (4,7).
nthprime (5,11).
nthprime(6,13).

These table entries can be looked up very quickly. Of course it isn't easy to add or
change entries in this kind of table, though it’s perfectly possible.

Another way to simulate an array is to use a functor with many arguments and
access the arguments individually using arg. For example, given the structure

primes(2,3,5,7,9,11,13,17,19,23,29)

you can pick out individual elements like this:

182 Advanced Techniques Chap. 7

?- arg(i,primes(2,3,5,7,9,11,13,17,19,23,29),What).
What = 2

7 arg(5,primes(2,3,5,7,9,11,13,17,19,23,29),What).
What = 9

In effect, you are using the argument positions of a cons cell as if they were an array of
pointers. Remember that a two-dimensional array is equivalent to a one-dimensional
array of one-dimensional arrays, and so on for higher dimensions.

Finally, notice that even if Prolog did have arrays, you still wouldn't be able
to swap or rearrange the elements of an array in place (without making a copy of
the array) because Prolog lacks a destructive assignment statement (that is, Prolog
doesn’t let you change the value of a variable that is already instantiated). Thus,
some array-based algorithms cannot be implemented directly in Prolog, although
they can of course be simulated using extra copying operations or different data
structures.

Exercise 7.5.1

Suggest at least two good ways to represent a 3 x 3 x 3 array of numbers in Prolog.

Exercise 7.5.2 (project)

Implement matrix multiplication in Prolog. Finding the best way to do this will require
considerable thought.

7.6. DIFFERENCE LISTS

A DIFFERENCE LIST is a list whose tail can be accessed without CDRing down the list.
This is achieved by keeping a copy of the tail outside the list. Thus,

difflist([a,b,c|Taill,Tail)

is a difference list with the members a, b, and c. Crucially, terms that occur in both the
head and the tail do not count; the above list will continue to represent the sequence
(a,b, ¢} no matter what value Tail is instantiated to. That's why it’s called a difference
list: Its contents are the difference between the whole list and the tail.

Before we put difference lists to use, let’s develop a better notation for them.
Any two-argument functor can be substituted for difflist/2. An infix operator
would be particularly convenient. In fact, we can use the infix operator / (the same
operator that denotes division in arithmetic expressions).! The practice of “over-
loading” an operator — that is, giving it multiple meanings in different contexts
— is perfectly legitimate. In fact, / already has two meanings: it denotes divi-
sion in arithmetic expressions, and it joins a functor to an arity in queries such as
abolish(parent/2).

We will thus write the difference list (a, b, c) as:

'In the Prolog literature, it is common to define \ as an infix operator for this purpose; using /
saves us an op declaration. Pereira and Shieber (1987), thinking along similar lines, use the minus sign
).

Sec. 7.7. Quicksort 183

[a,b,c|Taill/Tail

Difference lists can be concatenated in constant time, regardless of their length.
Recall that append (Chapter 3) has to CDR all the way down the first list before it can
join it to the second. This is not the case with append_d1, which appends difference
lists in a single step with just one clause:

append_d1(X/Y, Y/Z, X/2).

It may take some thought to see how this works. To begin with, the tail of the first
list and the head of the second list must be unifiable. This is usually no problem
because the tail of the first list is uninstantiated. Consider the query:

?- append_d1([a,bl4]/4, [c,d|C]/C, Result).

This sets up, in succession, the following instantiations:

X = [a,bl4]
Y =4= [c,dIC]
Z=C

Result = X/Z = [a,blA]/C = [a,b,c,d|C]/C

The very last step is crucial: By instantiating A, the heretofore uninstantiated tail of
the first list, we add elements to the list itself. Notice, by the way, that although
the result has an uninstantiated tail, the first list no longer does. Accordingly, you
cannot use the same list as the first argument of append_d1l more than once in the
same clause.

Difference lists are powerful but counterintuitive. They appear most often in
procedures that were first implemented with conventional lists and then carefully
rewritten for efficiency. Sterling and Shapiro (1994) use difference lists extensively
and discuss them at length.

Exercise 7.6.1

Define a predicate app3_dl that concatenates three difference lists:
?- app3_di([a,blX]1/X,[c,d|Y]/Y, [e,£12]/2,What).

What = [a,b,c,d,e,f]2]/Z

What are the values of X and Y after performing the concatenation?

7.7. QUICKSORT

It is often necessary to put the elements of a list into numeric or alphabetical order.
Most programmers are familiar with sorting algorithms that swap elements of arrays
in place — something that is impossible in Prolog. The most efficient way to sort a list
is usually to call a built-in machine-language routine that can perform an array-based
sort on Prolog list elements without doing any consing. Several Prologs provide a
built-in predicate, sort/2, that does this.

* One sorting algorithm that lends itself well to implementation in Prolog is C. A.
R. Hoare’s famous Quicksort (Hoare 1962), which was the first recursive algorithm

184 Advanced Techniques Chap. 7

to make an impact on everyday business data processing. The idea behind Quicksort
is this:

1. Pick an arbitrary element of the list (e.g., the first). Call it Pivot.

2. Divide the remaining elements into two lists: elements that should come before
Pivot and elements that should come after it. Call these Before and After
respectively.

3. RecursivelysortBefore, giving SortedBefore, and After, giving SortedAfter.
4. Concatenate SortedBefore + Pivot + SortedAfter to get the result.

This algorithm has no simple nonrecursive counterpart. It takes time proportional to
Nlog, N if the elements are initially in random order, or proportional to N? if they
are initially in an order that prevents the partitioning step (Step 2) from working
effectively.

File QSORT.PL (Figure 7.4) gives several Prolog implementations of Quicksort:
a straightforward implementation that uses append, an implementation with differ-
ence lists, and an implementation with what has been called “stacks.” The original
Quicksort uses append, which is excessively slow in some implementations; the latter
two Quicksorts get by without append.

The published literature on Quicksort is immense; for a thorough treatment,
see Knuth (1973:113-123). Many tricks have been developed to keep Quicksort from
becoming too inefficient when the elements are already almost in order; a simple one
is to use the median of three elements as the pivot.

You'll notice that Quicksort uses the comparison operator @< to compare terms
for alphabetical order. All our sorting algorithms will do this. Of course, if you are
only sorting numbers, you can use < to compare terms numerically, and if you are
sorting specialized data structures of some kind, you may need to write your own
comparison predicate.

Exercise 7.7.1

Look closely at d1qsort and igsort. Are these the same algorithm? Explain, in detail,
how they correspond and what the differences are. What effect would you expect the
differences to have on performance?

Exercise 7.7.2
Some textbooks say that Quicksort takes time proportionalto IV log,, N or N In N rather
than Vlog, N. Are they right? Explain.

Exercise 7.7.3

Modify Quicksort so that it removes duplicates in the list being sorted. That is,
after sorting, [a,b,r,a,c,a,d,a,b,r,a] should come out as [a,b,c,d,r], not as
[a,a,a,2,a,b,b,c,d,r,r].

Sec. 7.7. Quicksort 185

% File QSORT.PL
% Several versions of Quicksort

% For maximum portability, this code includes some cuts that are
% unnecessary in implementations that have first-argument indexing.

% partition(+List,+Pivot,~Before,-After)

% Divides List into two lists, one

% containing elements that should

% come before Pivot, the other containing
% elements that should come after it.

% Used in all versions of Quicksort.

partition([X|Tail],Pivot, [X|Before]l,After) :~ ¥ X precedes Pivot
X @< Pivot,

[
L3

partition(Tail,Pivot,Before,After).

partition([X|Tail] ,Pivot,Before, [X|After]l) :- % X follows Pivot
!

partition(Tail,Pivot,Before,After).

partition([l,_,[1,01). % Empty list

% Original Quicksort algorithm
% (Sterling and Shapiro, 1994:70; Clocksin and Mellish 1984:157)

quicksort([XITaill ,Result) :-

partition(Tail,X,Before,After),

quicksort (Before,SortedBefore),

quicksort (After,SortedAfter),
append(SortedBefore, [X|SortedAfter] ,Result).

quicksort({1,[1).
% Delete next 2 lines if append/3 is built in

append([]1,X,X).
append ({X|Taill,Y,[X|Z]) :- append(Tail,Y,Z).

Figure 7.4 Quicksort in Prolog (continued on next page).

186 Advanced Techniques

7 Quicksort with difference lists
% (Sterling and Shapiro 1994:289)

dlgsort(List,Result) :- quicksort_dl{(List,Result/[]).

quicksort_dl([X|Tail],Result/ResultTail) :-
! >

partition(Tail,X,Before,After),

quicksort_dl(Before,Result/[X}2]),

quicksort_dl{After,Z/ResultTail).
quicksort_dil([],x/x).
% Improved Quicksort using "stacks"

% (separate variables for the tail of the list)
% (Kluzniak and Szpakowicz 1985; Clocksin and Mellish 1984:157)

igsort(List,Result) :- igsort_aux(List,[],Result).

igsort_aux([X|Taill,Stack,Result) :-

1
b}

partition(Tail,X,Before,After),
igsort_aux(After,Stack,NewStack),
igsort_aux(Before, [X|{NewStack] ,Result).

igsort_aux([],Stack,Stack).

% Demonstration predicates

testl :- quicksort([7,0,6,5,4,9,4,6,3,3],What), write(What).
5 6

9
test2 :- dlgsort([7,0,6,5,4,9,4,6,3,3],%hat), write(What).
test3 :- igsort([7,0,6,5,4,9,4,6,3,3],What), write(What).

% End of QSORT.PL

Figure 7.4 (Continued).

Chap. 7

Sec. 7.8. Efficiency of Sorting Algorithms 187
7.8. EFFICIENCY OF SORTING ALGORITHMS

Table 7.1 compares the performance of Quicksort and some other sorting algorithms.
Perhaps the most obvious fact is that the performance of Quicksort really deteriorates
if the elements of the list are already almost in sequence. This is due to our particular
partitioning strategy, using the first element as the pivot, and could be corrected by
partitioning differently.

Further, the “improved” Quicksort and the difference-list Quicksort are not
noticeably better than the original one. That’s partly because Quintus Prolog handles
append very efficiently. (In fact, in the version we used, append was built-in, but a
user-defined version of append was nearly as fast.) By conirast, in an early version
of Arity Prolog, we found as much as a factor-of-8 speed difference between the
original Quicksort and the “improved” one.

What this shows is that optimizations can be implementation-dependent. Quin-
tus Prolog is based on a set of algorithms and data structures called the Warren
Abstract Machine (Ait-Kaci 1991); Arity Prolog is not. Tricks for improving perfor-

- mance in one of them do not necessarily work in the other. This does not lead to the
conclusion that either Arity or Quintus is better than the other; they’re just different.
On the other hand, any change that reduces the number of steps in the algorithm
will be beneficial on any computer, regardless of details of implementation.

Exercise 7.8.1

Modify Quicksort by changing the partitioning algorithm so that its performance does
not deteriorate so much if the list is already almost sorted. Demonsirate that your
version is faster {on such a list) than the original.

Exercise 7.8.2

The algorithms in QSORT.PL include some cuts that are not necessary in Prolog im-
plementations that have first-argument indexing. Remove the unnecessary cuts. How
should this affect performance?

Exercise 7.8.3

Classify the sorting algorithms in Table 7.1 into those that sort an N-element list in time
approximately proportional to N?, those that take time approximately proportional to
Nlog, N, and those that fit into neither category.

Hint: Whenever N is multiplied by 10, N 2 increases by a factor of 100, but N log, N
increases by a factor of about 33.

Exercise 7.8.4
Judging from their performance, which of the algorithms in Table 7.1 are essentially
varieties of Quicksort, and which ones are fundamentally different?

Exercise 7.8.5

In Table 7.1, what evidence is there that the built-in sort predicate uses different sorting
algorithms for lists of different lengths? (Look especially at memory usage.)

Chap. 7

188 Advanced Technigques

TABLE 7.1 TIME AND MEMORY NEEDED TO SORT LISTS OF VARIOUS LENGTHS.

Quintus Prolog 3.1, compiled, on a Sparcstation 1+ computer.

Elements in Elements already Elements initially

Algorithm random order almost sorted almost backward
Built-In Sort Predicate

10 elements 0.95 ms (0.2 KB) 0.85ms (0.2 KB) 0.85 ms (0.2 KB)

100 elements 14.5 ms (3.6 KB) 8.34 ms (1.7 KB) 1.33 ms (14 KB)

1000 elements 142 ms (35 KB) 58.3 ms (9.5 KB) 58.3 ms (11 KB)
Original Quicksort

10 elements 0.78 ms (0.4 KB) 1.18 ms (0.5 KB) 1.15ms (0.7 KB)

100 elements 20.3 ms (10 KB) 106 ms (40 KB) 43.7 ms (29 KB)

1000 elements 945 ms (387 KB) 10747 ms (3918 KB) 1243 ms (635 KB)

Difference-List Quicksort

10 elements 0.83 ms (0.5 KB) 1.28 ms (0.7 KB) 1.15 ms (0.7 KB)

100 elements 20.8 ms (10 KB) 109 ms (42 KB) 42.0ms (19 KB)

1000 elements 950 ms (380 KB) 10617 ms (3934 KB) 1212 ms (499 KB)
“Improved” Quicksort

10 elements 0.73 ms (0.3 KB) 1.20 ms (0.4 KB) 1.15 ms (0.4 KB)

100 elements 19.8 ms (7.5 KB) 107 ms (39 KB) 41.0 ms (17 KB)

1000 elements 943 ms (357 KB) 10760 ms (3910 KB) 1208 ms (476 KB)
Mergesort

10 elements 1.53ms (12KB) 1.55ms (1.1 KB) 1.58 ms (1.1 KB)

100 elements 28.5 ms (20 KB) 29.0 ms (18 KB) 29.7 ms (22 KB)

1000 elements 406 ms (269 KB) 412 ms (242 KB) 440 ms (291 KB)
Treesort

10 elements 0.88 ms (0.6 KB) 1.43 ms (0.9 KB) 1.35 ms (0.9 KB)

100 elements 24.0 ms (16 KB) 129 ms (80 KB) 48.2 ms (35 KB)

1000 elements 1132 ms (721 KB) 12739 ms (7829 KB) 1445 ms (960 KB)

Sec.7.9. Mergesort 189

Exercise 7.8.6 (small project)

Find out how to access the system clock on your computer and conduct some timings
of your own. Replicate as much of Table 7.1 as you can.

7.9. MERGESORT

A faster sorting algorithm is based on the operation of merging (combining) two lists
that are already sorted. Clearly, a pair of lists such as

[0,1,3,5,6,7,9]
[2,4,6,8]

can be combined into one sorted list by picking off, one at a time, the first element of
one list or the other, depending on which should come first: first 0, then 1 (still from
the first list), then 2 (from the second list), then 3 (from the first list), and so on. You
never have to look past the first element of either list. Here’s a merging algorithm in
Prolog:

% merge(+List1,+List2,~Result)

%, Combines two sorted lists into a sorted list.

merge ([Firsti|Rest1], [First2|Rest2], [Firsti|Rest]) :-

Firstl @< First2,

)
‘s

merge(Restl, [First2|Rest2],Rest).

nmerge([Firstl|Rest1], [First2|Rest2], [First2|Rest]) :-

\+ Firstl @< First2,

1
*

merge ([First1|Rest1] ,Rest2,Rest).
merge(X, [],X).

merge([],X,X).

To use merge as the core of a sorting algorithm, we’ll sort in the following way:
e Partition the original list into two smaller lists.
e Recursively sort the two lists.
e Finally, merge them back together.

The recursion is not endless because the middle step can be omitted when a list has
fewer than two elements. Here’s the implementation:

% msort(+Listi,-List2)
% Sorts Listl giving List2 using mergesort.

190 Advanced Techniques Chap. 7

msort ([First,Second|Rest],Result) :- % list has at least 2 elements
1
partition([First,Second|Rest],L1,L2),
msort(L1,SL1),
msort (L2,SL2),

merge (SL1,SL2,Result).

msort(List,List). % list has 0 or 1 element

Finally, we have to tackle the job of partitioning a list into two. One simple way to
do this is to put alternate elements into the two partitions, so that [0,1,2,3,4,5]
gets splitinto [0,2,4] and [1,3,5]:

% partition(+List,-Listi,-List2)
% splits List in two the simplest way,
% by putting alternate members in different lists

partition([First,Second|Rest], [First|F], [Second|S]) :- Y% >= 2 elements

partition(Rest,F,S).

partition(List,List,[]). % 0 or 1 element

Table 7.1 shows that mergesort is fast, and, unlike Quicksort, its efficiency does not
suffer if the list is already almost sorted or almost backward.

Exercise 7.9.1

Modify merge so that it removes duplicates from the lists that it creates. Call your
version merge._rd. To demonstrate that it works, try the query:

?- merge_rd([a,a,c,c], [b,b],What).

What = [a,b,c]

Do not use remove_duplicates or member. Traverse each list only once.

Exercise 7.9.2
Getmsort working on your computer and modify it to use merge_rd. Call your version
msort_rd.
Exercise 7.9.3
If your Prolog correctly implements the if-then operator (Chapter 4, Section 4.7), use it
to combine the first two clauses of merge into one, thereby speeding up the algorithm.
Exercise 7.9.4 (small project)

Devise a better partitioning algorithm for mergesort. Your goal should be to pre-
serve (some or all) ordered subsequences that already exist, so that mergesort will
proceed much faster if the list is already almost sorted. For example, in the list
{5,4,9,0,1,2,3,7,0,6], the sequence [0,1,2,3,7] should not be broken up, since
merge can handle it directly.

Sec. 7.10. Binary Trees 191

Sl VA N
Jenkins \
B Ea B AR
Cart‘er/ Robe‘rts/ /
/ L] L] /D [L [] L] / [] L]
¥ ¥ ¥ 4
Adamson Davis Kilgore Williams

Figure 7.5 A binary tree. Each cell contains a pointer to a name (or other data) together
with pointers to cells that alphabetically precede and foliow it.

You do not have to preserve all such sequences; instead, experiment with tech-
niques to increase the probability of preserving them.

7.10. BINARY TREES

So far we’ve been assuming that you'll store items in a list in the wrong order, then
sort the list. If you want to keep a set of items sorted all the time, a list isn’t the best
structure in which to store it. Instead, you should use a BINARY TREE.

Figure 7.5 shows the general idea. Unlike a list, a binary tree associates each
element with pointers to two subordinate trees, not just one. What’s more, you can
find any element very quickly by using alphabetical order, as follows:

s Start at the top.

o If the item you want should come before the item you're currently looking at,
then follow the left pointer.

e If the item you want should come after the item you're currently looking at,
then follow the right pointer.

On the average, it takes only log, NV steps to find any element of an N-element tree
this way. By contfrast, finding any element of an V-element list takes, on the average,
N/2 steps. ;

We can represent a binary tree in Prolog as a structure of the type

192 Advanced Techniques Chap. 7

tree(tree(tree(empty,
’Adanson”’,
empty),
’Carter’,
tree(empty,
’Davis’,
empty)),
’Jenkins’,
tree(tree (empty,
’Kilgore’,
empty),
’Roberts’,
tree(empty,
’Williams’,
empty)))

Figure 7.6 A Prolog term representing Figure 7.5.

tree(Element,Left,Right)

where Element is an element and Left and Right are additional trees. We will use
the atom empty to designate an empty tree (one with no elements and no pointers).
Figure 7.6 shows what the tree in Figure 7.5 looks like when encoded this way. Notice
that Figure 7.5 is not a full tree diagram of this structure (such as we were drawing
in Section 7.1), but the essential relationships are preserved.

To insert an element into a tree, you use alphabetic order to search for the place
where it ought to go and put it there:

% insert(+NewItem,-Tree,+NewTree)
% 1Inserts an item into a binary tree.

insert(NewItenm,empty, tree (NewItem,empty,empty)) :- !.

insert(NewItem,tree(Element,Left »Right) ,tree(Element ,NewlLeft, Right)) :-

Newltem @< Element,
]

-3

insert(NewItem,Left,NewLeft).

insert(NewItem,tree(Element,Left sRight) ,tree(Element,Left, NewRight)) :-
insert(NewItem,Right,NewRight).

If the elements to be inserted are initially in random order, the tree remains well
balanced — that s, the chances are about equal of branching to the left or to the right
in any particular case. If the elements are inserted predominantly in ascending or
descending order, the tree becomes unbalanced and list-like (Figure 7.7).

Irees can be searched quickly because the process of finding an element is
like that of inserting it, except that we stop when we find a node whose element

Sec. 7.10. Binary Trees 193

L2 | o] o
=\

Adamson

SRR
£\

Carter

DavAis/ \
B B RN
Ienld‘xm/ \
AN
Kilggre/ \
SEEIEN
Robe‘rts/ \
ZaEnKx
Williams

Figure 7.7 Anunbalanced binary tree, containing the same data as in Figure 7.5 but inserted
in a different order.

194 Advanced Techniques Chap. 7

matches the one we are looking for. On the average, in a tree with N nodes, the
number of nodes that must be examined to find a particular element is proportional
to log, N if the tree is well balanced, or proportional to N if the tree is severely
unbalanced. Of course, nodes can have other arguments containing information
associated with the key element; in this case, the binary tree becomes the core of a
fast information-retrieval system.

Many strategies have been developed for keeping trees balanced as they are
built. For a survey, see Wirth (1986:196-268).

Exercise 7.10.1

Get insert working on your computer. What tree do you get by executing the following
query? Draw a diagram of it.
?- insert(nute,empty,Treel),

insert(covington,Treel,Tree2),

insert(vellino,Tree2,Tree3),

write(Tree3), nl.

Exercise 7.10.2

Define a predicate retrieve(Tree,Element) that succeeds if Element is an element
of Tree. At each branching, determine whether Element should be in the left or the
right subtree, and search only that subtree. Using the tree from the previous exercise,
demonstrate that your predicate works correctly.

Exercise 7.10.3

Our version of insert makes a new copy of at least part of the tree. Implement a
version of insert in which empty positions are marked by uninstantiated variables
(rather than by the atom empty), and new subtrees can be added by simply instantiating
the variables. (What list processing technique does this correspond to?)

7.11. TREESORT

We will demonstrate binary trees by using them as the basis of a sorting algorithm:
we'll transform a list into a tree, then transform it back into a list, and it will come out
sorted. This is not a normal use for trees because normally, if you want the benefits
of trees, you'd keep your data in a tree all along rather than starting out with a list
and then transforming it. But it does make a good demonstration of the power of
binary trees.

The algorithm is shown in file TREESORT.PL (Figure 7.8). Table 7.1 shows that
its performance is comparable to Quicksort, and, indeed, it is essentially a Quicksort
with much of the recursion expressed in the data structure, notjust in the procedures.
We emphasize that TREESORT.PL was written for readability, not efficiency; it could
probably be speeded up a few percent without difficulty.

The algorithm to convert a list into a tree is simple: CDR down the list and call
msert once for each element. To turn the tree back into a list, retrieve the elements in
right-left order and build the list tail first, starting with the last element and adding
the others in front of it. This is done as follows:

Sec.7.11. Treesort 195

% File TREESORT.PL
% Sorting a list by converting it inmto
% a binary tree, then back into a list

% treesort(+List,-NewList)
% Sorts List giving NewList.

treesort(List ,NewList) :-
list_to_tree(List,Tree),
tree_to_list(Tree,NewList).

% insert(+NewItem,-Tree,+NewTree)
% Inserts an item into a binary tree.

insert (NewItem,empty,tree(NewItem,empty,empty)) :— !.

insert (NewIltem,tree(Element,Left,Right),tree(Element ,NewLeft,Right)) :-

NewItem @< Element,

insert (NewItem,Left ,NewLeft).

insert(NewItem,tree(Element,Left,Right),tree(Element,Leit,NevRight)) -
insert(NewItem,Right ,NewRight).

% insert_list(+List,+Tree,-NewTree)
% Inserts all elements of List into Tree giving NewTree.

insert_list([Head|Tail],Tree,NewTree) :-

insert (Head,Tree,MiddleTres),
insert_list(Tail ,MiddleTree,NewTree).

insert_list([],Tree,Tree).

Figure 7.8 A sorting algorithm based on binary trees (continued on next page).

196 Advanced Techniques

% list_to_tree(+List,-Tree)

% 1inserts all elememts of List into an initially empty tree.

list_to_tree(List,Tree) :- insert_list(List,empty,Tree).

% tree_to_list(+Tree,-List)
% places all elements of Tree imto List in sorted order.

tree_to_list(Tree,List) :-—
tree_to_list_aux(Tree, [],List).

tree_to_list_aux(empty,List,List).
tree_to_list_aux(tree(Item,Left,Right),DldList,NewList) :-

tree_to_list_aux(Right,01dList,List1),
tree_to_list_aux(Left, [Item|List1],NewList).

% Demonstration predicate

test :~ treesort([7,0,6,5,4,9,4,6,3,3],What), write(What).

% End of TREESORT.PL

Figure 7.8 (Continued),

Chap. 7

Sec.7.12. Customized Arithmetic: A Replacement for is 197

1. Recursively extract all the elements in the right subtree and add them to the
list.

2. Add the element in the top node to the list.
3. Recursively extract all the elements in the left subtree, and add them to the list.

This is implemented in the predicate tree_to_list in TREESORT.PL.

Much time can be saved by avoiding the use of lists altogether. If all you want
to do is write out the elements of a tree in sorted order, without actually converting
them back into a list, you can just traverse the tree, like this:

% write_sorted(+Tree)
% prints out the elements of Tree in sorted order

write_sorted(empty) :- !.

write_sorted(tree(Element,Left,Right)) :-
write_sorted(Left),
write(Element), write(®’ °),
write_sorted(Right).

Trees are a good alternative to lists in situations where the data must be searched
quickly or retrieved in a particular order.

Exercise 7.11.1

Get treesort working on your computer and modify it to eliminate duplicates in the
list being sorted. Call your version treesort_rd.

Exercise 7.11.2
In TREESORT.PL, why does tree_to_list_aux traverse Right before traversing Le£t?

7.12. CUSTOMIZED ARITHMETIC: A REPLACEMENT FOR is

There is no easy way to extend the syntax of expressions that can be evaluated by
is. If your Prolog doesn’t have exp () or 1og2() or arcsec(), or whatever you need,
you're seemingly out of luck.

Accordingly, here we work around the problem by writing an extensible re-
placement for is. We'll call it := in honor of the Pascal assignment statement,?
although it is in fact an expression evaluator like is.

Prolog operator priorities make it easy to split up expressions in the desired
way. Recall that, for instance, 2+3+4/5 will unify with X+Y because + has higher
priority than any other operator within it and is therefore the principal functor. So:

?The Pascal assignment operator := is the same as in the earlier language ALGOL. Computer
folklore says that the choice of : = for ALGOL was the result of a typesetting error: The author of an early
document instructed the typesetter to set <= (to symbolize copying from right to left) everywhere he had
typed :=, and the instruction was ignored. This is not confirmed; := already meant “is defined as” in
mathematical papers.

198 Advanced Techniques Chap. 7

e To evaluate X+Y (where X and Y are expressions), first evaluate X and ¥, then
add the results.

¢ To evaluate X*Y (where X and Y are expressions), first evaluate X and Y, then
multiply the results.

It's obvious how to fill in -, /, and other arithmetic operations. Moreover,
e To evaluate a plain number, just leave it alone.

File ARITH.PL (Figure 7.9) shows the whole thing. We implement +, -, *, /, and
rec() (which means “reciprocal” and is put there to show that we can make up
our own evaluable functors). You could, of course, add any other functors that
you wish. [Algorithms for computing sines, cosines, and many other mathematical
functions are given by Abramowitz and Stegun (1964).] Note however that :=
may run considerably slower than is because some Prologs (Quintus, for instance)
compile is-queries into basic arithmetic operations on the computer, while the only
thing the compiler can do with a query to : = is make a call to the procedure you have
defined.

Exercise 7.12.1

Get “:=" working on your computer. Compare the time taken to execute the two goals
X is 2+3/4and Y := 2+3/4. To get a meaningful comparison, you will have to con-
struct a loop that performs the computation perhaps 100 to 1000 times.

Exercise 7.12.2

Modity the definition of := so that first-argument indexing can speed up the choice of

clauses.
Hint: thequeryResult := Expressioncould calla predicate such as eval (Expression,
Result), which could index on the principal functor of Expression.

7.13. SOLVING EQUATIONS NUMERICALLY

We also lamented in Chapter 3 that Prolog cannot solve for numerical unknowns in
equations; for example, the query

7- X+1 is 1/X. % wrong!

does not work. Clearly, the reason Prolog can’t solve such queries is that it can’t
exhaustively search the whole set of real numbers.

However, heuristic searching for numbers is quite feasible, and techniques for
doing it are at least as old as Sir Isaac Newton. In this section we’ll develop a
numerical equation solver that will answer queries such as these:

7- solve(X +1=1/X).
X = 0.618034

?- solve(X = cos(X)).
X = 0.739085

Sec. 7.13. Solving Equations Numerically

% File ARITH.PL
% A homemade substitute for ’is’

% Result := Expression
% Evaluates expressions in much the same way as ’is’.

% Evaluable functors are + - * / and rec() (reciprocal).

:— op(700,xfx,:=).

Result := X + Y - ',

Ivalue := X,

Yvalue := Y,

Result is Xvalue + Yvalue.
Result := X - Y - !,

Ivalue := I,

Yvalue := Y,

Result is Xvalue - Yvalue.
Result := X *x Y - ',

Xvalue := X,

Yvalue := Y,

Result is Xvalue * Yvalue.
Result := X / Y e !,

Ivalue := X,

Yvalue := ¥,

Result is XIvalue / Yvalue.
Result := rec(X) :- LI

Xvalue := X,

Result is 1 / Xvalue.
Term = Term t- 1,

umber (Term) .
- = Term i~ write(’Error, can’’t evaluate ’), write(Term), nl,

!, fail.

Figure 7.9 An expression evaluator in Prolog.

199

200 Advanced Techniques Chap. 7

To solve Left = Right:

function Dif (X) = Left — Right
where X occurs in Left and/or in Right;

procedure Solve:

begin
Guessl =1;
Guess2 = 2;
repeat

Slope == (Dif (Guess2) — Dif (Guess1))/(Guess2 — Guessl);
Guess := Guess2;
Guess2 = Guess2 — (Dif (Guess2) /Slope)
until Guess2 is sufficiently close to Guess1;
result is Guess2
end.

Figure 7.10 The secant method, expressed in Pascal-like pseudocode.

Crucially, this is a numerical solver, not an analytic one. That is, it does not solve by
manipulating the equation itself (except for one minor change which we'll get to);
instead, it takes the equation, as given, and searches heuristically for the number
that will satisfy it.3

The technique that we'll use is called the secant method. Given an equation
Left = Right, we’'ll define a function

Dif(X) = Left — Right

where X is a variable that appears in Left, Right, or both. Now, instead of trying to
make Left = Right, we'll be trying to make Dif (X) = 0.

We’ll do this by taking two guesses at the value of X and comparing the
corresponding values of Dif (X). One of them will be closer to zero than the other.
Not only that, but the amount of difference between them will tell us how much
farther to change X in order to get Dif (X) even closer to zero. Figure 7.10 shows the
whole algorithm in Pascal-like pseudocode.

Figure 7.11 shows how this algorithm is implemented in Prolog. First, free_in
searches the equation to find a variable to solve for. Then define_dif creates and
asserts a clause to compute Dif (X). Finally, solve_for conducts the search itself.

The secant method works surprisingly well but isn’t infallible. It can fail in
three major ways. First, it may try two values of X that give the same Dif(X); when
this happens, it can’t tell what to do next, and the program crashes with a division
by zero. That's why

?~ solve(X*X = X*3).

3Sterling and Shapiro (1994) give an analytic equation solver in Prolog, with references to the
literature.

Sec. 7.14. Bibliographical Notes 201

fails or terminates abnormally. Second, it may simply fail to converge in a reasonable
number of iterations; that’s why

?- solve(sin(X) = 0.001).

never finds a solution (at least on our computer; yours may be different). Last, the
secant method may jump over excessively large portions of the sine curve or similar
periodic functions, so that even when it ultimately solves a problem, the solution is
not the one with X nearest zero. That’s why you get

?- solve(sin(X) = 0.01).
X = 213.6383

when you might have expected X (in radians) to be very close to 0.01. All of these
failures can often be prevented by choosing different initial guesses for X, instead of
always using 1 and 2.

We chose the secant method only because of its simplicity. For information
on other, better, numerical methods for solving equations, see Hamming (1971) and
Press, Flannery, Teukolsky, and Vetterling (1986).

Exercise 7.13.1

Get SOLVER PL working on your computer and use it to solve Kepler’'s equation,
E — 0.01sin E = 2.5. What solution do you get?

Exercise 7.13.2
What happens when you try to solve X = X + 1 using SOLVER.PL?

Exercise 7.13.3 (project)

Implement a better numerical equation solver. This could be anything from a minor
improvement to SOLVER .PL all the way to a program that uses considerable intelligence
to select the best of several methods.

7.14. BIBLIOGRAPHICAL NOTES

This is the chapter in which our narrow view of Prolog suddenly opens out onto
the wide world of symbolic computing, and it is not possible to provide a narrowly
focused bibliography.

Thebest general references on Prolog algorithms are Sterling and Shapiro (1994)
and O’Keefe (1990), and the ongoing series of logic programming books published by
MIT Press. On the implementation of Prolog, see Maier and Warren (1988), Ait-Kaci
(1991), and Boizumault (1993).

202 Advanced Techniques

% File SOLVER.PL
s Numerical equation solver (Covington 1989)

% solve(+(Left=Right))
% Left=Right is an arithmetic equation containing an uninstantiated
% variable. On exit, that variable is instantiated to a solution.

solve(Left=Right) :-
free_in(Left=Right,X),
', % accept only one answer from free_in
define_dif(X,Left=Right),
solve_for(X).

% free_in(+Term,-Variable)
% Variable occurs in Term and is uninstantiated.

free_in(X,X) :- % An atomic term
var(X).

free_in(Term,X) :- % A complex term
Term \== [{I1,
Term =.,., [_,ArglAxrgs],
(free_in(Arg,X) ; free_in(Args,X)).

%4 define_dif(-X,+(Left=Right))
% Defines a predicate to compute Left-Right given X.
% Heve X is uninstantiated but occurs in Left=Right.

define_dif(x,Left=Right) H
abolish(dif,2),
assert((dif (X,Dif) :- Dif is Left-Right)).

% solve_for(-Variable)
% Sets up arguments and calls solve_aux (below).

solve_for(Variable) :-

dif(1,Dif1),
solve_aux(Variable,1,Dif1,2,1).

Figure 7.11 A numerical equation solver (continued on next page).

Chap. 7

Sec. 7.14. Bibliographical Notes

% solve_aux(~Variable,+Guessi,+Difl,+Guess2,+Iteration)

/. Uses the secant method to solve for Variable (see text).

% Other arguments:

% Guessl -- Previous estimated value.
% Difi ~- What 'dif’ gave with Guessi.
%, Guess2 -- A better estimate.

% Iteration ~-- Count of tries taken.

solve_aux(_,_,_,_,100) :-
1

L]

write(’ [Gave up at 100th iteration]’),nl,
fail.

solve_aux(Guess2,Guessl,_,Guess2,_) :-

close_enough(Guessi,Guess2),
!

write(’ [Found a satisfactory solution]?),nl.

solve_aux(Variable,Guessl,Dif1,Guess2,Iteration) :-
write([Guess2]),nl,
dif (Guess2,Dif2),
Slope is (Dif2-Dif1) / (Guess2-Guessi),
Guess3 is Guess2 - (Dif2/Slope),
NewIteration is Iteration + 1,
solve_aux(Variable,Guess2,Dif2,Guess3,NewIteration).

% close_enough (+X,+Y)

% True if X and Y are the same number to within a factor of 1.000001.

close_enough(X,¥) :- Quot is X/Y, Quot > 0.999999, Quot < 1.000001.

% Demonstration predicate

test :~ solve(X=1+1/X), write(X), nl.

% End of SOLVER.PL

Figure 7.11 (Continued).

203

Part I1

Artificial Intelligence
Applications

Chapter 8

Artificial Intelligence
and the Search for Solutions

8.1. ARTIFICIAL INTELLIGENCE, PUZZLES, AND PROLOG

Prolog is a product of artificial intelligence research. Its creation and continued
development are motivated by the need for a powerful programming language well
suited to symbolic processing. This kind of computing — so different in many ways
from numerical computing — is what artificial intelligence is all about.

Artificial intelligence (Al) has come to the attention of most people only in the
last few years because of the coverage it has received in the popular press, but it is not
really a new concept. Researchers like John McCarthy at Stanford University, Marvin
Minsky at M.LT., and Herbert Simon at Carnegie-Mellon University were creating
this field as early as the 1950’s. The recent enthusiasm for artificial intelligence
has been fueled by the appearance of a new technology based on this research.
This new technology includes expert systems, natural language interfaces, and new
programming tools such as Prolog.

To understand the purpose and power of Prolog, we must examine how it is
applied to some of the classic problems in Al But first, what is AI? We will look at
some of the fundamental goals that have been suggested for artificial intelligence
research. Then we will look at some classic Al problems, including programs that
can play games and solve puzzles. We will continue our discussion of Al topics in
the next four chapters, looking at expert systems, automated reasoning, and natural
language processing.

The most controversial goal that has been suggested for Al is to build thinking
machines. According to the “hard” Al researcher, artificial intelligence is exactly

207

208 Artificial Intelligence and the Search for Solutions Chap. 8

what its name implies: the attempt to build intelligent artifacts. One of the most
important lessons of artificial intelligence research is that we know very little about
what “intelligence” really is. The more we tinker with our computers, the more we
are impressed with how easily our minds perform complex tasks even though we
can’t begin to explain how we are able to do these things.

Alan Turing, the noted British mathematician, proposed the famous “Turing
test” for machine intelligence. He proposed that a machine was intelligent if a person
communicating with it, perhaps over a teletype so that he couldn’t see it, couldn’t tell
that he was communicating with a machine rather than another human being. But
Turing’s test doesn’t tell us what intelligence is. It proposes an independent criterion
for deciding whether a machine has intelligence, whatever it is. Turing predicted
that some machine would pass his test by the year 2000. Most people working in Al
agree that no machine will pass Turing’s test by 2000, and perhaps no machine will
ever pass it.

Some critics argue that it is impossible for a machine to be intelligent in the
way that humans are intelligent. At best, these arguments show that none of the
machines we have or envision now are humanly intelligent. They really do not show
that such a machine is impossible. Until we can say just what intelligence is, it's
difficult to see how anyone could prove that machine intelligence is either possible
or impossible.

Not every scientist whose work falls within the vague realm of Al is trying to
build an intelligent machine. What other goals are there for AI?

One possible goal is to build machines that do things a human needs intelligence
to do. We aren’t trying to build machines that are intelligent, but only to build
machines that simulate intelligence. For example, whatever intelligence is, it is
needed to play chess or to prove theorems in mathematics. Let’s see if we can build
computers that simulate intelligence by performing these tasks as well as a human
can.

This criterion does not separate what we have come to call artificial intelligence
from many other things. Pocket calculators and even thermostats perform tasks that
a human needs intelligence to perform, but we probably wouldn'’t say that these
devices simulate intelligence. They certainly aren’t usually included in lists of great
successes in Al research. On the other hand, Al is concerned with things like vision
and hearing. Do humans require intelligence to see and hear? Very primitive animals
can do these things as well as or better than we can.

Part of our problem is that we are once again running into the question, What is
intelligence? If we set this question aside and just try to build machines that simulate
intelligence, we may also end up taking the machine as the definition of intelligence.
Something like this has happened with IQ tests already: some people propose that
intelligence as whatever it is the IQ test measures. Even if we avoid this pitfall, it
may only be an illusion to think that it is easier to simulate intelligence than to build
a truly intelligent machine. If we are not sure what intelligence is, it is no easier to
recognize simulated intelligence than real intelligence in a machine.

The Al scientist must therefore try to reach a better understanding of what
intelligence is. He differs from other investigators interested in this same problem
mainly because his primary research tool is the computer. This, then, is a third

Sec. 8.1. Artificial Intelligence, Puzzles, and Prolog 209

possible goal for Al research: to investigate intelligence by means of computers.

Perhaps we should stretch our boundaries a bit. Human intelligence may
include many things like reasoning, learning, problem solving, rule following, lan-
guage understanding, and much more. Further, these are only part of what many
Al researchers are investigating. For example, perception and memory, with its at-
tendant failures of forgetting, are among the topics explored by some Al scientists.
Yet we might hesitate to call these processes intelligent, although we might agree
that they somehow contribute to intelligence. The whole range of human mental
activities and abilities are called cognitive processes. One goal of Al research, then, is
to use computers to help us better understand these processes.

On this view of artificial intelligence, Al research begins not with computers but
with humans. Scientists from different disciplines, including psychology, linguistics,
and philosophy, have been studying cognitive processes since long before computers
became commonplace. When these cognitive scientists begin to use computers to
help them construct and test their theories of human cognition, they become Al
scientists.

Using computers in this way has certain advantages over other methods of
investigation. Unlike abstract theories, computer programs either run or they don't;
when they run, they give definite outputs for specific inputs. We might think of the
computer as a kind of cognitive wind tunnel. We have a theory about how humans
perform some cognitive process, analogous to a theory about how a wing lifts an
airplane. We build a program based on our theory just as an aeronautical engineer
builds a model wing based on his theory. We run the program on our computer as
the aeronautical engineer tries out his model wing in the wind tunnel. We see how
it runs and use what we learn to improve our theory.

Suppose we devise a theory about human cognition and then embody the
theory in a program. When we run the program, it gives results that agree with
our observations of real, living humans. Does this mean that the theory we used
to build the program was correct? Unfortunately, no. The theory and the program
may get the same results a human gets, but do it in a very different way than a
human does. For example, a pocket calculator does arithmetic by converting to
binary numbers whereas a human being works directly with decimal numbers. So
although computer modeling can help us find flaws in our theories, it can never
finally confirm them.

Al represents a new technology as well as an area of basic research. Techno-
logical spinoffs of Al include new programming languages and techniques that can
be used for many different purposes. Prolog is one of these. Besides scientists who
do what we might call basic Al research, we should also talk about a group that
we could call Al technicians. These are people whose goal is to find ways to solve
real, everyday problems using computers. What distinguishes them from other pro-
grammers and software designers is that they use the tools that have been developed
through Al research.

- Some Al practitioners not only use existing Al techniques butalso try to develop
new techniques for using computers to solve problems. How do we distinguish these
researchers from computer scientists generally? We will base the distinction on the
kinds of problems Al scientists are trying to solve. Humans do many different

210 Artificial Intelligence and the Search for Solutions Chap. 8

kinds of things, and they are good at explaining exactly how they do some of them.
Examples are adding a column of numbers or alphabetizing a list of words. Humans
have great difficulty explaining how they do other things, such as understanding a
sentence or riding a bicycle. We have good theories about arithmetic, but our theories
about understanding language are primitive by comparison. Some Al researchers
would describe what they do as trying to find ways to get computers to do the things
that humans can do without being able to say exactly how they do them.

We have four possible goals that an Al researcher might pursue: building
intelligent machines, building machines that simulate intelligence, using computers
to better understand intelligence, and finding ways to get a computer to do things
that humans do but can't explain how they do. Of course, these are not exclusive
goals and a particular Al scientist might be chasing all of these goals at once. Nor
does this list exhaust the goals of artificial intelligence. Different Al researchers
might give quite different accounts of what they are doing. None of this gives us a
tight definition of artificial intelligence, but we hope it provides some understanding
of what some of us working in Al think we are about.

Humans love games and puzzles. Even simple games and puzzles often require
considerable intelligence. Since the early days of Al, researchers have been intrigued
with the possibility of a machine that could play a really complex game like chess
as well as any human could. Many of us have met chess programs that play better
than we do.

The original hope was that in developing game playing programs we might
learn something crucial about the nature of intelligence. Unfortunately, it is often
difficult to apply much of what we learn from one program directly to another pro-
gram. But some things have become clear through this and other kinds of research,
including efforts to build automated theorem provers.

Let’s look at what is involved in playing a game or solving a puzzle. There is
something that is manipulated. This may be a board and pieces, letters and words,
or even our own bodies. There is some initial configuration in which the things to
be manipulated are placed. There is a set of rules determining how these things may
be manipulated during the game. There is a specification of a situation which, if
achieved, constitutes success. All of these factors define the game or puzzle.

Besides the defining rules, there may be rules of strategy associated with a
game. These rules recommend specific choices from among the legal moves we can
make in different situations during the game. Because they are only advisory, we
can violate these rules and still play the game.

To write a program that can play a game or solve a puzzle, we will need to find
a way to represent the initial situation, the rules for making legal moves, and the
definition of a winning situation. Most of us know how to play tic-tac-toe. We know
how to draw the grid and how to make the moves. We know what constitutes a win.
However, it is not obvious how best to represent all this knowledge in a program.
This problem of knowledge representation is one of the most common problems in
all Al efforts.

Different ways of representing knowledge may make solving a problem more
or less difficult. (Consider, for instance, trying to do long division using Roman
numerals.) Al of us have tangled with a frustrating problem at some time, then

Sec. 8.2. Through the Maze 211

suddenly seen a new way of looking at the problem that makes its solution simple.
The way we choose to represent the knowledge needed to play a game can make the
task of writing a program that plays the game difficult or easy.

We will limit our attention to puzzles and other problems that can be solved by
a single person. These are easier to understand and analyze than competitive games
where we must take into account the moves of another person. Some of the puzzles
we will discuss are not just for entertainment; they represent practical problems.

Once we develop a good representation of the situations that can arise in
a puzzle, define the initial situation and the legal moves that can be made, and
characterize the criteria for success, we should be able to use the method of exhaustive
search to solve the puzzle. That is, we can try all possible sequences of moves until
we find one that solves the puzzle. To be exhaustive, the procedure for generating
sequences of moves must eventually generate every sequence of moves that could
possibly be made. If there is a solution to the puzzle, exhaustive search must
eventually find it.

We will use the method of exhaustive search to solve a maze, to solve the
missionaries and cannibals puzzle, to solve a peg-board puzzle, to color a map, to
search a molecular structure for specified substructures, and to make flight connec-
tions. We will also look at some faster methods for searching for solutions that are
not exhaustive. Finally, we will develop routines for conducting forward-chaining
and breadth-first inference within Prolog as alternatives to Prolog’s normal mode of
depth-first backward-chaining inference.

8.2. THROUGH THE MAZE

Our first puzzle is a simple maze. The object, of course, is to find a path through the
maze from the start to the finish. First, we must represent the maze in a form Prolog
can use. The maze was constructed on a piece of graph paper. It is six squares wide
and six squares high. We begin by numbering these squares (Figure 8.1).

Treating start and finish as positions in the maze, we have a total of 38
positions. From each of these we can move to certain other positions. If we can
move from one position to another, we will say that these two positions are connected.
We enter a single fact in the definition of the predicate connect/2 for each pair of
connected locations. Then we define a connected_to predicate using the predicate
cornnect:

connect (start,2).
connect(1,7).
connect(2,8).

connect(32,finish).
connected_to(A,B) :- comnect(4,B).
connected_to(A,B) :~ connect(B,4).

A path through the maze is a list of positions with start at one end of the
list and finish at the other, such that every position in the list is connected to the

212 Artificial Intelligence and the Search for Solutions

START

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27 28 29 30

31 32 33 34 35 36

FINISH

Figure 8.1 A simple maze with locations within the maze numbered.

Chap. 8

Sec. 8.2. Through the Maze 213

positions before and after it. Initially, our path contains the single point start which
we place into a list. From this initial path, we want to generate a complete path from
start to finish. Once a solution is found, we want our program to display it for us.

solve_maze :- path([start],Solution), write(Solution).

The procedure path will find a solution to the maze puzzle. Of course, when
we reach finish we have a solution and our search is ended.

path([finish|Rest0fPath], [finish|Rest0fPath]).

At each intermediate step in our search for a solution to the maze, we have a list
of the positions we have already visited. The first member of this list is our current
position. We proceed by looking for a new position that we can reach from our
current position. This new position must be connected to our current position. We
don’t want to move around in a circle or back and forth between the same positions,
so our new position will also have to be a point that isn’t already in the path we are
building.

path([CurrentLocation|Rest0fPath],Solution) :-
connected_to(CurrentLocation,NextLocation),
\+ member (NextLocation,Rest0fPath),
path([NextLocation,CurrentLocation|Rest0fPath],Solution).

If the procedure path reaches a point where it cannot find a new position,
Prolog will backtrack. Positions will be dropped off the front of the path we have
built until we reach a point where a new position can be reached. Then the search
will move forward again until we reach finish or another dead end. Since the
maze has a solution, Prolog will eventually find it if we have defined our procedure
correctly. The complete program is called MAZE.PL.

Exercise 8.2.1
Construct a maze that has more than one solution, i.e., more than one path through the
maze. Define a procedure shortest_path that finds a shortest solution to the maze.
Exercise 8.2.2

How would you represent a three-dimensional maze constructed in a 4 x 4 x 4 grid?
How would you modify solve_maze to find a path through this three-dimensional
maze?

8.2.1. Listing of MAZE.PL

% MAZE.PL
% A program that finds a path through a maze.

solve_maze :- path([start],Solution), write(Solution).

path([finish|Rest0fPath], [finish|Rest0fPath]).
path([CurrentLocation|{Rest0fPath] ,,Solution) :-

214 Artificial Intelligence and the Search for Solutions Chap. 8

connected_to(CurrentLocation,NextLocation),
\+ member (NextLocation,RestOfPath),
path([NextLocation,CurrentLocationIResthPath],Solution).

connected_to(Locationl,Location2) :- connect(Locationl,Location2).
connected_to(Locationl,Location2) :- commect(Location2,Locationi).

member (X, [X]|_]).
member(X,[_1Y]) :-
member (X,Y).
8.2.2. Listing of MAZE1.PL (Connectivity Table)

% MAZE1.PL
% Connectivity table for the maze in Figure 8.1

connect(start,2). connect (1,7).
connect (2,8). connect(3,4).
connect(3,9). connect (4,10).
connect(5,11). connect (5,6).
connect(7,13). connect(8,9).
connect(10,16). connect(11,17).
connect(12,18). connect(13,14).
connect(14,15). connect (14,20).
connect(15,21). connect (16,22).
connect (17,23). connect (18,24).
connect (19,25). connect (20,26).
connect (21,22). connect (23,29).
connect (24,30). connect (25,31).
connect (26,27). connect (27,28) .
connect(28,29). connect(28,34).
connect (30,36). connect(31,32).
connect(32,33). connect (33,34).
connect(34,35). connect (35,36).
connect(32,finish).

8.3. MISSIONARIES AND CANNIBALS

Our second puzzle is the familiar plight of the missionaries and the canni