
Michael A. Covington
www.covingtoninnovations.com

This PDF file was prepared in 2005 from an article that originally
appeared in PC Techniques, 1994, and is reproduced here by permission.
This software was written for DOS 5.0 and PROBABLY WILL NOT
WORK under current versions of Windows. The author cannot provide
any support or further information unless you want to employ him as a
paid consultant.

Copyright 1994 Michael A. Covington.
Do not redistribute without permission.

Joystick-Port Interfacing

 by Michael Covington

 A joystick port (game port) can interface with more than just

joysticks. Now that most PCs have joystick ports -- but comparatively few

PC owners are serious game players -- it's time to put the neglected

joystick port to use to monitor CPU temperature, line voltage, the weather,

or a host of other real-world quantities. In this article I'll show you how.

This article is a sequel to one I wrote for PC Tech Journal in 1985, and

about which I'm still getting inquiries.

Inside the Joystick Port

 IBM's design for a pair of joysticks contains four variable resistors

and four switches ("fire buttons," Figure 1). Accordingly, one joystick port

can measure four analog quantities and four switch closures. Note that the

switches are returned to ground but the resistors are returned to +5V. Be

 2

sure not to short +5V and ground together, unless you want to reboot the

computer in a hurry, and possibly melt some wire in the process.

 The switch-closure inputs are simply TTL inputs pulled up to +5V

by 1000-ohm resistors. The analog inputs are more interesting; Figure 2

shows what's inside them. The crucial component is the capacitor, which

normally cannot charge because a switching transistor is holding a short

circuit across it. The computer takes a reading by removing the short, and

then timing how long it takes the capacitor to charge to 3.3 volts.

 This is the original 1981 IBM PC joystick port circuit, and all

subsequent PC joystick ports have worked the same way, with two

exceptions. First, a few of the cheapest ports only support one joystick.

Second, many newer ports have a "sensitivity adjustment" that sets the

charging threshold to values other than 3.3V. The adjustment is usually a

switch or knob, but on some Kraft joysticks, it is a digital-to-analog

converter under software control.

Reading the Sensors

 Although the hardware is well-standardized, the software interface

definitely isn't. The most reliable way to read the analog inputs is through

Microsoft BASIC (i.e., BASIC.COM, BASICA.COM, QBASIC, or

QuickBasic; not Visual Basic). Microsoft has done their best to get the

STICK() function to return an integer close to the actual resistance in

kilohms, regardless of the CPU speed, BIOS version, or anything else.

 Access is simple: in BASIC, a statement such as

X = STICK(0)

 3

takes readings from all four sensors, and stores the first one into X. Then

STICK(1), STICK(2), and STICK(3) retrieve the values that were read

from the other three sensors. Listing 1 demonstrates this technique.

 Another way to read the sensors is through the BIOS, using INT

15h with AH = 84h and DX = 1. The four sensor values come back in AX,

BX, CX, and DX respectively. Listing 4 shows how to do this in Turbo

Pascal. While experimenting, you can also use Microsoft Diagnostics

(MSD.EXE) to read the analog sensors through the BIOS.

 The problem is, there's a lot of variation among BIOSes. This

variation affects only the scale of the numbers: a 100-kilohm resistance

may give a reading of 40 on one machine and 180 on another. The original

PC, XT, and PCjr do not have BIOS joystick support at all.

 The third way to read the joystick port is, of course, to manipulate

the hardware itself -- in effect, implement for yourself what BASIC and the

BIOS are trying to do. I haven't tried this. To do it, output any value (it

doesn't matter what) to port 201h, then repeatedly read that same port,

timing how long it takes each of the lower 4 bits to switch from 1 back to 0.

For a range of 0 to 200 kilohms, the time will range from 24 to 2200

microseconds. For high accuracy, use a hardware timer.

Reproducibility

 The laws of physics ensure that the time taken to charge the

capacitor will always be proportional to the resistance (including the

internal 2.2k resistor). Thus, this simple circuit gives excellent linearity --

just what game players need.

 4

 The problem is with reproducibility from machine to machine and

port to port. The values of the capacitors can vary as much as 10%, so you

won't get exactly the same numbers from different game cards, or even

different analog inputs on the same card.

 More importantly, precision timing is never easy on the PC, and

both BASIC and the BIOS routines are affected by minor changes in the

software environment. In particular, a program running in a DOS box

under Windows will not give the same readings as when running under

DOS by itself, because of differences in timing.

 Fortunately, you can compensate for these variations in timing -- or

at least detect them -- by putting known resistances across some of the

analog inputs, and comparing them to the unknown value, rather than

trying to take absolute readings. That's also a good way to deal with

BIOSes that use different numeric scales for the same range of resistances.

 Industry uses precision analog-to-digital converters -- not joystick

ports -- for serious measurement work. But there are plenty of

applications for which the limited capabilities of the joystick port are quite

adequate.

Measuring Resistance and Voltage

 Listing 1 shows a program for measuring resistance. Essentially, it

solves the equation

Resistance = (Reading x Factor) + Offset

 5

where Factor and Offset are unknown until calibration is performed for

a particular game card and software environment. Naturally, you can do

the calibration once, then save the values for future use on the same

machine. The resistance to be measured is connected in place of one of the

variable resistors in Figure 1.

 The joystick port can also measure voltage, by charging the

capacitor from the unknown voltage through a known resistance. The

charging time is inversely proportional to the voltage, and the algorithms

for making measurements are shown in Listing 2.

 If the voltage to be measured is between 5 and 15 volts, the only

external circuitry needed is a single resistor (Figure 3). For voltages

outside this range, start with the circuit in Figure 4, which covers 0 to +5

volts with 0.1-volt resolution, and divide the voltage down as necessary at

the input. Notice that this circuit requires a separate 9-volt battery for the

op-amp. If the battery is inconvenient, you can steal +12V from inside the

computer, or replace the LM324 op-amp with a Maxim MAX-418 or Texas

Instruments TLC1079IN, which draws so little current that the battery will

last for months. Do not substitute other op-amps (TL084, 741, etc.) whose

input common-mode range does not include V-.

Measuring Temperature

 Temperature is especially easy to measure with the joystick port.

The trick is to use a negative-temperature-coefficient (NTC) thermistor in

series with a resistor whose resistance is about 70% of that of the

thermistor at the temperature where best performance is needed. A good

combination is a 100-kilohm thermistor with a 68k resistor (Figure 5),

 6

which gives 1°F resolution over a range of several tens of degrees. With

considerable loss of resolution, you can use Radio Shack's 10-kilohm

thermistor with a 4.7k resistor (allowing for 2.2k already inside the

joystick port).

 The resistor "linearizes" the thermistor so that 1/R is close to

linearly proportional to temperature. You can then use the algorithm in

Listing 3 to calibrate for Fahrenheit, Celsius, or Kelvin temperature. (Or

even Rankine or Réaumur, if your tastes run toward the exotic.)

 To calibrate the thermistor, bind it tightly to the bulb of an accurate

thermometer by wrapping with aluminum foil; then apply an outer wrap of

waterproof plastic, and immerse the whole assembly in hot and cold water.

 What's this good for? Figure 6 shows one example: a graph of the

air temperature in my computer room, measured once per minute by a

program similar to Listing 2, then graphed with Quattro and post-edited

with Corel Draw. This room has a rather large oscillation in temperature

as the thermostat clicks on and off. At 7:00, the heat in another part of the

house was turned on, changing the waveform but not the amplitude.

 Another obvious use for a thermistor is to monitor the temperature

of an 80486 or Pentium CPU. In this case, calibration may not be

necessary; all you need is a relative reading, and a warning if the CPU

suddenly gets hotter than normal.

Other measurements

 The joystick port can measure anything that translates into

resistance, voltage, or current -- and that means practically anything at all.

 7

 Figure 7 shows how to measure light level with a CdS photocell; the

parallel resistor keeps the overall resistance in the measurable range even

though the photocell, by itself, would have a resistance of several megohms

in the dark. Calibration is up to you. Humidity sensors, barometric

pressure sensors, and even potentiometers with weights (to measure

position or acceleration) are other possibilities.

References

Covington, Michael A. "Joystick Metrics: Measuring Physical Properties

through the PC's Joystick Port." PC Tech Journal, May, 1985, pp.

100-109.

Technical Reference. IBM Personal Computer Hardware Reference

Library. IBM, 1983.

Parts suppliers

Most of the parts mentioned in this article are available at Radio Shack,

which can special-order hard-to-find items. Thermistors are available

from Digi-Key (1-800-344-4539, 701 Brooks Avenue South, Thief River

Falls, MN 56701), which will probably also stock the MAX-418 IC in the

future.

 8

(Sidebar)

 Joysticks under Windows

 There are two ways to read the joystick port under Windows. The

low road is to use the BIOS, as shown in Listing 4. This is more complex

than simply issuing an INT instruction in the middle of a Windows

program, but Turbo Pascal and Turbo C++ provide routines that do the

housekeeping for you (intr and int86 respectively).

 The high road is to implement a device driver for the joystick port,

supporting the joystick API documented in the Windows Multimedia

Reference. A sample is included with the Microsoft Windows Device

Driver Kit and has also been distributed separately as IBMJOY.ZIP. As

supplied, this driver isn't quite suitable, because it recalibrates itself

periodically under the assumption that a real joystick is attached. Still, it

could easily be modified to read resistance directly, storing machine-

specific calibration information in WIN.INI.

 9

(Sidebar)

 Still More Uses for a Joystick Port

Besides what's already been mentioned, you could use a joystick port to...

 • detect switch closures, tracking the state of a thermostat or

burglar alarm, the movement of a model train, or the activities of a trained

hamster;

 • accept 4 bits of parallel TTL-level data directly, through the

switch-closure inputs;

 • use the ON STRIG(n) statement in BASIC to make switch

closures trigger event-driven routines;

 • steal 5-volt power from the computer for some other accessory

(after all, the joystick port brings out both +5V and ground).

 10

LISTING 1
100 ' R.BAS (M. Covington 1994)
110 ' Measuring RESISTANCE through joystick port
120 '
130 SENSOR = 0 ' possibilities: 0, 1, 2, 3
140 '
150 CLS
160 PRINT "RESISTANCE PROGRAM"
170 PRINT
180 '
190 ' Calibration
200 '
210 PRINT "Calibration needs 2 known values,"
220 PRINT "preferably near ends of range."
230 '
240 OPTION BASE 1
250 DIM RDG(2), VALUE(2)
260 FOR I = 1 TO 2
270 PRINT
280 PRINT "Connect known value "; I; " and press any key..."
290 WHILE INKEY$ = ""
300 RDG(I) = STICK(0) ' initialize all 4 sensors
310 IF SENSOR > 0 THEN RDG(I) = STICK(SENSOR)
320 LOCATE CSRLIN, 1
330 PRINT "Reading: "; RDG(I); " ";
340 WEND
350 PRINT
360 INPUT "Actual value"; VALUE(I)
370 NEXT I
380 '
390 FACTOR = (VALUE(2) - VALUE(1)) / (RDG(2) - RDG(1))
400 OFFSET = .5 * (VALUE(2)-FACTOR*RDG(2)+VALUE(1)-FACTOR*RDG(1))
410 '
420 PRINT
430 PRINT "Factor =", FACTOR, "Offset =", OFFSET
440 '
450 ' Taking readings
460 '
470 PRINT
480 PRINT "Taking readings continuously. Exit with Ctrl-Break."
490 PRINT
500 '
510 WHILE 1
520 RDG = STICK(0) ' initialize all 4 sensors
530 IF SENSOR > 0 THEN RDG = STICK(SENSOR) ' take reading
540 VALUE = FACTOR * RDG + OFFSET
550 LOCATE CSRLIN, 1, 0
560 PRINT USING "#### ####.##"; RDG; VALUE;
570 WEND

 11

LISTING 2

' Same as Listing 1 except for the following lines:
'
100 ' V.BAS (M. Covington 1994)
110 ' Measuring VOLTAGE or CURRENT through joystick port
'
160 PRINT "VOLTAGE/CURRENT PROGRAM"
'
390 FACTOR = (1/VALUE(2) - 1/VALUE(1)) / (RDG(2) - RDG(1))
400 OFFSET = .5*(1/VALUE(2)-FACTOR*RDG(2)+1/VALUE(1)-FACTOR*RDG(1))
'
540 VALUE = 1 / (FACTOR * RDG + OFFSET)

 12

LISTING 3

' Same as Listing 1 except for the following lines:
'
100 ' T.BAS (M. Covington 1994)
110 ' Measuring TEMPERATURE with linearized thermistor
'
160 PRINT "TEMPERATURE PROGRAM"
'
390 FACTOR = (VALUE(2) - VALUE(1)) / (1/RDG(2) - 1/RDG(1))
400 OFFSET = .5*(VALUE(2)-FACTOR/RDG(2)+VALUE(1)-FACTOR/RDG(1))
'
540 VALUE = FACTOR / RDG + OFFSET

 13

ADDENDUM:
A Win32 C program that may be useful. This is from my files from 1994, apparently ran under Windows
3.1, and I have no other information about it, or any recollection of whether it worked. – M. C., 2005.

/* Joystick access under Windows */
/* Requires IBMJOY.DRV installed */

#include <stdio.h> /* for printf() */
#include <conio.h> /* for kbhit() */
#include <stdlib.h> /* for exit() */
#include <mmsystem.h> /* for joystick */

UINT WINAPI joySetCalibration(UINT uJoyID /*,
 UINT a, UINT b, UINT c, UINT d, UINT e, UINT f*/);

UINT joycal[6] = {0x0ba2,0x0ba2,0x0a3d,0x0a3d,0,0};

/* undoc! */

JOYCAPS cap;
JOYINFO joy;
UINT status;

void joyerror(int errcode){
 /* Writes message for joystick error */
 /* and terminates the program */
 if (errcode == JOYERR_NOERROR)
 puts("Nothing wrong");
 else if (errcode == MMSYSERR_NODRIVER)
 puts("No joystick driver installed");
 else if (errcode == JOYERR_PARMS)
 puts("No such joystick ID");
 else if (errcode == JOYERR_UNPLUGGED)
 puts("Joystick not plugged in");
 else if (errcode == JOYERR_NOCANDO)
 puts("Required resource already in use");
 exit(errcode);
}

main(){
 /* Determine capabilities */
 status = joyGetDevCaps(JOYSTICKID1,&cap,sizeof(cap));
 if (status != JOYERR_NOERROR) joyerror(status);
 printf("Joystick driver: %s\n",cap.szPname);
 printf("X range: %u-%u\n",cap.wXmin,cap.wXmax);
 printf("Y range: %u-%u\n",cap.wYmin,cap.wYmax);

 status = joySetCalibration(JOYSTICKID1 /*
,3000,3000,2000,2000,0,0 */);
 printf("Calibration set. Status = %d\n");
/*
 status = joySetCalibration(JOYSTICKID2,3000,3000,2000,2000,0,0);
 printf("Calibration set. Status = %d\n");
*/
 printf("Press Return...\n");
 getchar();

 /* Repeatedly show position */

 14

 do {
 Yield();
 status = joyGetPos(JOYSTICKID1,&joy);
 if (status == JOYERR_NOERROR)
 printf("%u %u ", joy.wXpos, joy.wYpos);
 else joyerror(status);
 status = joyGetPos(JOYSTICKID2,&joy);
 if (status == JOYERR_NOERROR)
 printf("%u %u\n", joy.wXpos, joy.wYpos);
 else joyerror(status);
 }
 while(status==JOYERR_NOERROR && !kbhit());
}

 15

LISTING 4

PROGRAM read_joystick;
 { BIOS joystick access, Turbo Pascal }

{$IFDEF WINDOWS}
USES WinDos,WinCrt;
VAR r: TRegisters;
{$ELSE}
USES Dos,Crt;
VAR r: Registers;
{$ENDIF}

BEGIN
 clrscr;
 WHILE NOT keypressed DO
 BEGIN
 gotoxy(1,1);
 r.ax := $8400;
 r.dx := 1;
 intr($15,r);
 writeln(r.ax:5,r.bx:5,r.cx:5,r.dx:5)
 END

END.

 16

(Biography)

 Michael Covington does research on computational linguistics and

manages the artificial intelligence lab at the University of Georgia. His

other interests include electronics, ham radio, and astronomy. He is

author of Natural Language Processing for Prolog Programmers (Prentice-

Hall, 1994) and co-author of the Cambridge Eclipse Photography Guide

(Cambridge University Press, 1994).

 17

Figure 1

Figure 2

 18

Figure 3

Figure 4

 19

Figure 5

Figure 6

 20

Figure 7

-end-

