
An Algorithm to Align Words for
Historical Comparison

Michael A. Covington�

The University of Georgia

The first step in applying the comparative method to a pair of words suspected of being cognate is
to align the segments of each word that appear to correspond. Finding the right alignment may
require searching. For example, Latin dō ‘I give’ lines up with the middle dō in Greek didōmi,
not the initial di.

This paper presents an algorithm for finding probably correct alignments on the basis of
phonetic similarity. The algorithm consists of an evaluation metric and a guided search procedure.
The search algorithm can be extended to implement special handling of metathesis, assimilation,
or other phenomena that require looking ahead in the string, and can return any number of
alignments that meet some criterion of goodness, not just the one best. It can serve as a front end
to computer implementations of the comparative method.

1. The problem

The first step in applying the comparative method to a pair of words suspected of being
cognate is to align the segments of each word that appear to correspond. This alignment
step is not necessarily trivial. For example, the correct alignment of Latin dō with Greek
didōmi is

- - d ō - -
d i d ōm i

and not

d ō - - - -
d i d ōm i

d - - ō - -
d i d ōm i

- - - - d ō
d i d ōm i

or numerous other possibilities. The segments of two words may be misaligned because
of affixes (living or fossilized), reduplication, and sound changes that alter the number
of segments, such as elision or monophthongization.

Alignment is a neglected part of the computerization of the comparative method.
The computer programs developed by Frantz (1970), Hewson (1974), and Wimbish (1989)
require the alignments to be specified in their input. The Reconstruction Engine of Lowe
and Mazaudon (1994) requires the linguist to specify hypothetical sound changes and

� Artificial Intelligence Center, The University of Georgia, Athens, Georgia 30602-7415; email
mcovingt@ai.uga.edu.

c
 1997 Association for Computational Linguistics



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

canonical syllable structure. The cognateness tester of Guy (1994) ignores the order of
segments, matching any segment in one word with any segment in the other.

This paper presents a guided search algorithm for finding the best alignment of one
word with another, where both words are given in a broad phonetic transcription. The
algorithm compares surface forms and does not look for sound laws or phonological
rules; it is meant to correspond to the linguist’s first look at unfamiliar data. A prototype
implementation has been built in Prolog and tested on a corpus of 82 known cognate
pairs from various languages. Somewhat surprisingly, it needs little or no knowledge of
phonology beyond the distinction between vowels, consonants, and glides.

2. Alignments

If the two words to be aligned are identical, the task of aligning them is trivial. In all
other cases, the problem is one of inexact string matching, i.e., finding the alignment that
minimizes the difference between the two words. A dynamic programing algorithm
for inexact string matching is well known (Sankoff & Kruskal 1983, Ukkonen 1985,
Waterman 1995), but I do not use it, for several reasons. First, the strings being aligned
are relatively short, so the efficiency of dynamic programming on long strings is not
needed. Second, dynamic programming normally gives only one alignment for each
pair of strings, but comparative reconstruction may need the n best alternatives, or all
that meet some criterion. Third, the tree search algorithm lends itself to modification
for special handling of metathesis or assimilation. More about this later; first I need to
sketch what the aligner is supposed to accomplish.

An alignment can be viewed as a way of stepping through two words concurrently,
consuming all the segments of each. At each step, the aligner can perform either a MATCH
or SKIP. A match is what happens when the aligner consumes a segment from each of the
two words in a single step, thereby aligning the two segments with each other (whether
or not they are phonologically similar). A skip is what happens when it consumes a
segment from one word while leaving the other word alone. Thus, the alignment

a b c -
- b d e

is produced by skipping a, then matching b with b, then matching c with d, then skipping
e. Here as elsewhere, hyphens in either string correspond to skipped segments in the
other.1

The aligner is not allowed to perform, in succession, a skip on one string and then
a skip on the other, because the result would be equivalent to a match (of possibly
dissimilar segments). That is, of the three alignments

a b - c a - b c a b c
a - d c a d - c a d c

only the third one is permitted; pursuing all three would waste time because they
are equivalent as far as linguistic claims are concerned. (Determining whether b and d
actually correspond is a question of historical reconstruction, not of alignment.) I call
this restriction the NO-ALTERNATING-SKIPS RULE.

1 Traditionally, the problem is formulated in terms of operations to turn one string into the other. Skips in
string 1 and string 2 are called deletions and insertions respectively, and matches of dissimilar segments are
called substitutions. This terminology is inappropriate for historical linguistics, since the ultimate goal is to
derive the two strings from a common ancestor.

2



Covington An Algorithm to Align Words

To identify the best alignment, the algorithm must assign a PENALTY (cost) to every
skip or match. The best alignment is the one with the lowest total penalty. As a first
approximation, we can use the following penalties:

0.0 for an exact match;

0.5 for aligning a vowel with a different vowel, or a consonant with a different
consonant;

1.0 for a complete mismatch;

0.5 for a skip (so that two alternating skips — the disallowed case — would
have the same penalty as the mismatch to which they are equivalent).

Then the possible alignments of Spanish el and French le (phonetically [l
]) are:

e l
l 
 2 complete mismatches = 2.0

- e l
l 
 - 2 skips + 1 vowel pair = 1.5

e l -
- l 
 2 skips + 1 exact match = 1.0

The third of these has the lowest penalty (and is the etymologically correct alignment).

3. The search space

Figure 1 shows, in the form of a tree, all of the moves that the aligner might try while
attempting to align two three-letter words (English [hæz] and German [hat]). We know
that these words correspond segment-by-segment,2 but the aligner doesn’t. It has to
work through numerous alternatives in order to conclude that

h æ z
h a t

is indeed the best alignment.
The alignment algorithm is simply a depth-first search of this tree, beginning at the

top of Figure 1. That is, at each position in the pair of input strings, the aligner tries first
a match, then a skip on the first word, then a skip on the second, and computes all the
consequences of each. After completing each alignment it backs up to the most recent
untried alternative and tries a different one. “Dead ends” in the tree are places where
further computation is blocked by the no-alternating-skip rule.

As should be evident, the search tree can be quite large even if the words being
aligned are fairly short. Table 1 gives the number of possible alignments for words of
various lengths; when both words are of length n, there are about 3n�1 alignments, not
counting “dead ends.” Without the no-alternating-skip rule, the number would be about
5n=2. Exact formulas are given at the end of this paper.

2 Actually, as an anonymous reviewer points out, the exact correspondence is between German hat and
earlier English hath. The current English -s ending may be analogical. This does not affect the validity of
the example because /t/ and /s/ are certainly in corresponding positions, regardless of their
phonological history.

3



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

Figure 1
Search space for aligning English /hæz/ with German /hat/.

4



Covington An Algorithm to Align Words

Fortunately, the aligner can greatly narrow the search by putting the evaluation
metric to use as it works. The key idea is to abandon any branch of the search tree as
soon as the accumulated penalty exceeds the total penalty of the best alignment found
so far. Figure 2 shows the search tree after pruning according to this principle. The total
amount of work is roughly cut in half. With larger trees, the saving can be even greater.

To ensure that a relatively good alignment is found early, it is important, at each
stage, to try matches before trying skips. Otherwise the aligner would start by generating
a large number of useless displacements of each string relative to the other, all of which
have high penalties and do not narrow the search space much. Even so, the algorithm
is quite able to skip affixes when appropriate. For example, when asked to align Greek
didōmi with Latin dō, it tries only three alignments, of which the best two are:

d i d ōm i d i d ōm i
d - - ō - - - - d ō - -

Choosing the right one of these is then a task for the linguist rather than the alignment
algorithm. However, it would be easy to modify the algorithm to use a lower penalty
for skips at the beginning or end of a word than skips elsewhere; the algorithm would
then be more willing to postulate prefixes and suffixes than infixes.

4. The full evaluation metric

Table 2 shows an evaluation metric developed by trial and error using the 82 cognate
pairs shown in the subsequent tables. To avoid floating-point rounding errors, all penal-
ties are integers, and the penalty for a complete mismatch is now 100 rather than 1.0.
The principles that emerge are that syllabicity is paramount, consonants matter more
than vowels, and affixes tend to be contiguous.

Somewhat surprisingly, it was not necessary to use information about place of
articulation in this evaluation metric (although there are a few places where it might
have helped). This accords with Anttila’s (1989:230) observation that great phonetic
subtlety is not needed to align words; what one wants to do is find the exact matches
and align the syllabic peaks, matching segments of comparable syllabicity (vowels with
vowels and consonants with consonants).

It follows that the input to the aligner should be in broad phonetic transcription, us-
ing symbols with closely similar values in both langauges. Excessively narrow phonetic
transcriptions don’t help; they introduce too many subtle mismatches that should have
been ignored.

Phonemic transcriptions are acceptable insofar as they are also broad phonetic, but,
unlike comparative reconstruction, alignment does not benefit by taking phonemes as
the starting point. One reason is that alignment deals with syntagmatic rather than
paradigmatic relations between sounds; what counts is the place of the sound in the
word, not the place of the sound in the sound system. Another reason is that earlier and
later languages are tied together more by the physical nature of the sounds than by the
structure of the system. The physical sounds are handed down from earlier generations
but the system of contrasts is constructed anew by every child learning to talk.

The aligner’s only job is to line up words to maximize phonetic similarity. In the
absence of known sound correspondences, it can do no more. Its purpose is to simulate
a linguist’s first look at unfamiliar data. Linguistic research is a bootstrapping process
in which data leads to analysis and analysis leads to more and better-interpreted data.
In its present form, the aligner does not participate in this process.

5



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

Table 1
Number of alignments as a function of lengths of words.

Lengths of words Alignments

2 2 3
2 3 5
2 4 8
2 5 12

3 3 9
3 4 15
3 5 24

4 4 27
4 5 46

5 5 83

...
10 10 26,797

Table 2
Evaluation metric developed from actual data.

PENALTY CONDITIONS

0 Exact match of consonants or glides (w, y)

5 Exact match of vowels (reflecting the fact that
the aligner should prefer to match consonants
rather than vowels if it must choose between the two)

10 Match of two vowels that differ only in length,
or i and y, or u and w

30 Match of two dissimilar vowels

60 Match of two dissimilar consonants

100 Match of two segments with no discernible similarity

40 Skip preceded by another skip in the same word
(reflecting the fact that affixes tend to be
contiguous)

50 Skip not preceded by another skip in the same word

6



Covington An Algorithm to Align Words

Figure 2
Same tree after pruning.

7



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

Table 3
Alignments obtained with test set of Spanish-French cognate pairs.

yo : je ‘I’ y o
ž 


tu : tu ‘you’ t u
t ü

nosotros : nous ‘you’ n o s o t r o s
n u - - - - - -

quién : qui ‘who?’ k y e n
k i - -

qué : quoi ‘what?’ k - e
kw a

todos : tous ‘all’ t o d o s
t u - - -

una : une ‘one’ (f.sg.) u n a
ü n -

dos : deux ‘two’ d o s
d ö -

tres : troix ‘three’ t r - e s
t r w a -

hombre : homme ‘man’ omb r e
om - - -

5. Results on actual data

Tables 3–10 show how the aligner performed on 82 cognate pairs in various lan-
guages. (Tables 5–8 are loosely based on the Swadesh word lists of Ringe 1992.)3

These are “difficult” language pairs. On closely similar languages, such as Span-
ish/Italian or German/Danish, the aligner would have performed much better. Even so,
on Spanish and French — chosen because they are historically close but phonologically
very different — the aligner performed almost flawlessly (Tables 3–4). Its only clear
mistake is that it missed the l:r correspondence in arbre : árbol, but so would the linguist
without other data.

With English and German it did almost as well (Tables 5–6). The s in this is aligned
with the wrong s in dieses because that alignment gave greater phonetic similarity; taking
off the inflectional ending would have prevented this mistake. The alignments of mouth
with Mund and eye with Auge gave the aligner some trouble; in each case it produced
two alternatives, each getting part of the alignment right.

English and Latin (Tables 7–8) are much harder to pair up, since they are sepa-

3 To briefly address Ringe’s main point: if the “best” alignment of a pair of words is used, the chance of
finding a chance similarity is much higher than when using a fixed, canonical alignment.

8



Covington An Algorithm to Align Words

Table 4
Alignments obtained with test set of Spanish-French cognate pairs (continued).

árbol : arbre ‘tree’ a r b - o l
a r b r 
 -

pluma : plume ‘feather’ p l uma
p l üm -

cabeza ‘head’ : cap ‘promontory’ k a b e G a
k a p - - -

boca : bouche ‘mouth’ b o k a
b u š -

pie : pied ‘foot’
p y e
p y e

corazón : coeur ‘heart’ k o r a G o n
k ö r - - - -

ver : voir ‘see’ b - e r
vw a r

venir : venir ‘come’ b e n i r
v 
 n i r

decir : dire ‘say’ d e G i r
d - - i r

pobre : pauvre ‘poor’ p o b r e
p o v r 


rated by millennia of phonological and morphological change, including Grimm’s Law.
Nonetheless, the aligner did reasonably well with them, correctly aligning, for example,
star with stēlla and round with rotundus. In some cases it was just plain wrong, e.g., align-
ing tooth with the -tis ending of dentis. In others it was indecisive; although it found the
correct alignment of fish with piscis, it could not distinguish it from three alternatives. In
all of these cases, eliminating the inflectional endings would have resulted in correct or
nearly correct alignments.

Table 9 shows that the algorithm works well with non-Indo-European languages,
in this case Fox and Menomini cognates chosen more or less randomly from Bloomfield
(1941). Apart from some minor trouble with the suffix of the first item, the aligner had
smooth sailing.

Finally, Table 10 shows how the aligner fared with some word pairs involving
Latin, Greek, Sanskrit, and Avestan, again without knowledge of morphology. Because
it knows nothing about place of articulation or Grimm’s Law, it can’t tell whether the
d in daughter corresponds with the th or the g in Greek thugatēr. But on centum : hekaton
and centum : sat�m the aligner performed perfectly.

9



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

Table 5
Alignments obtained with test set of English-German cognate pairs.

this : dieses � i - - s
d ı̄ z 
 s

that : das �æ t
d a s

what : was w
˚

a t
v a s

not : nicht n a - t
n i x t

long : lang l o /
l a /

man : Mann mæn
ma n

flesh : Fleisch f l e - š
f l a y š

blood : Blut b l 
 d
b l ū t

feather : Feder f e � 
 r
f ē d 
 r

hair : Haar h æ r
h ā r

6. Improving the alignment algorithm

This alignment algorithm and its evaluation metric are, in effect, a formal reconstruction
of something that historical linguists do intuitively. As such, they provide an empirical
test of theories about how historical reconstruction is practiced.

There are limits to how well an aligner can perform, given that it knows nothing
about comparative reconstruction or regularity of correspondences. Nonetheless, the
present algorithm could be improved in several ways.

One obvious improvement would be to implement feature-based phonology. Im-
plicitly, the aligner already uses two features, vocalicity and vowel length. A fuller set of
features would have given a better alignment of piscis with fish, preferring f :p to f :k. Fea-
tures are not all of equal importance for the evaluation metric; syllabicity, for instance,
will surely be more important than nasality. Using multivariate statistical techniques
and a set of known “good” alignments, the relative importance of each feature could be
calculated.

Another improvement would be to enable the aligner to recognize assimilation,
metathesis, and even reduplication, and assign lower penalties to them than to arbi-
trary mismatches. The need to do this is one reason for using tree search rather than
the standard dynamic programming algorithm for inexact string matching. Dynamic

10



Covington An Algorithm to Align Words

Table 6
Alignments obtained with test set of English-German cognate pairs (continued).

ear : Ohr i r
ō r

eye : Auge
a - - y
a wg 


a y - -
a wg 


nose : Nase n ow z -
n ā - z 


mouth : Mund ma w - G
m - u n t

ma w G -
m - u n t

tongue : Zunge t - 
 / -
t s u / 


foot : Fuß f u t
f ū s

knee : Knie - n i y
k n ı̄ -

hand : Hand h æn d
h a n t

heart : Herz h a r t -
h e r t s

liver : Leber l i v 
 r
l ē b 
 r

programming is, in effect, a breadth-first search of the tree in Figure 1; Ukkonen’s (1985)
improvement of it is a narrowed breadth-first search with iterative broadening. Both of
these rely on computing parts of the tree first, then stringing partial solutions together
to get a complete solution (that’s what “dynamic programming” means). They do their
partial computations in an order that precludes “looking ahead” along the string to
undo an assimilation, metathesis, or reduplication. By contrast, my depth-first search
algorithm can look ahead without difficulty.

Another crucial difference between my algorithm and dynamic programming is
that, by altering the tree pruning criterion, my algorithm can easily generate, not just
the best alignment or those that are tied for the best position, but the n best alignments,
or all alignments that are sufficiently close to the best (by any computable criterion).

Multilateral alignments are needed when more than two languages are being com-
pared at once. For example,

e l -
- l 


i l -

is the etymologicaly correct three-way alignment of the masculine singular definite
article in Spanish, French, and Italian. Multilateral alignments can be generated by
aligning the second word with the first, then the third word with the second (and

11



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

Table 7
Alignments obtained with test set of English-Latin cognate pairs.

and : ante æn d
a n t e

at : ad æ t
a d

blow : flāre b l - - ow
f l ā r e -

ear : auris i - r - -
a w r i s

eat : edere i y t - - -
e - d e r e

fish : piscis - - - f i š
p i s k i s

f - - - i š
p i s k i s

f i - - - š
p i s k i s

f i š - - -
p i s k i s

flow : fluere f l ow - - -
f l - u e r e

star : stēlla s t a r - -
s t ē l l a

full : plēnus - - - f u l
p l ē n u s

f - - - u l
p l ē n u s

grass : grāmen
g r - - æ s
g r āme n

g r æ - - s
g r āme n

g r æ s - -
g r āme n

heart : cordis (gen.) h a r - - t
k o r d i s

h a r t - -
k o r d i s

horn : cornū h o r n -
k o r n ū

I : ego
- - a y
e g o -

12



Covington An Algorithm to Align Words

Table 8
Alignments obtained with test set of English-Latin cognate pairs (continued).

knee : genū
- - n i y
g e n ū -

mother : māter m 
 � 
 r
mā t e r

mountain : mōns ma wn t 
 n
mō - n - - s

ma wn t 
 n
mō - n s - -

name : nōmen n e ym - -
n ō - me n

new : novus n y uw - -
n - owu s

n y uw -
n owu s

one : ūnus w 
 n - -
- ū n u s

round : rotundus r a - wn d - -
r o t u n d u s

sew : suere s ow - - -
s - u e r e

sit : sēdere s i t - - -
s ē d e r e

three : trēs G r i y
t r ē s

tooth : dentis (gen.) - - - t uw G
d e n t i - s

thin : tenuis G i n - - -
t e n u i s

13



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

Table 9
Alignments obtained with test set of Fox-Menomini cognate pairs.

kiinwaawa : kenuaq ‘you (pl.)’ k ı̄ nw ā w a -
k e n - - u a q

k ı̄ nwā w a -
k e n u - - a q

niina : nenah ‘I’ n ı̄ n a -
n e n a h

naapeewa : naap��w ‘man’
n ā p ē w a
n ā p �̄w -

waapimini : waapemen ‘maize’
w ā p i m i n i
w ā p eme n -

nameesa : nam��qs ‘fish (n.)’
n amē - s a
n am �̄ q s -

okimaawa : okeemaaw ‘chief’ o k i mā w a
o k ēmā w -

šiišiipa : seeqsep ‘duck (n.)’
š ı̄ - š ı̄ p a
s ē q s e p -

š ı̄ š - ı̄ p a
s ē q s e p -

ahkohkwa : ahk��h ‘kettle’ a h k o h kw a
a h k �̄ h - - -

pemaatesiweni : pemaatesewen ‘life’
p emā t e s i w e n i
p emā t e s e w e n -

asenya : aqs�n ‘stone (n.)’
a - s e n y a
a q s � n - -

14



Covington An Algorithm to Align Words

Table 10
Alignments obtained with cognate pairs from other languages.

Greek didōmi : Latin dō ‘I give’ d i d ōm i
- - d ō - -

d i d ōm i
d - - ō - -

Greek thugatēr : German Tochter ‘daughter’ th u g a t ē r
t o x - t 
 r

English daughter : Greek thugatēr ‘daughter’ - - d o t 
 r
th u g a t ē r

d - - o t 
 r
th u g a t ē r

d o - - t 
 r
th u g a t ē r

Latin ager : Sanskrit ajras ‘field’
a - g e r
a �� r a s

a g - e r
a �� r a s

a g e r - -
a �� - r a s

Sanskrit bharāmi : Greek pherō ‘I carry’ bh a r ām i
phe r - - ō

bh a r ām i
phe r ō - -

Latin centum : Greek hekaton ‘100’ - - k e n t um
h e k a - t o n

Latin centum : Avestan sat�m ‘100’ k e n t um
s a - t 
m

implicitly also the first), and so on, but it would be advantageous to apply the evaluation
metric to the whole set rather than just the pairs that are chained together. Multilateral
alignment is also an important problem in DNA sequence analysis, and no general
algorithm for it is known, but research is proceeding apace (Kececioglu 1993, Waterman
1995).

7. From here to the Comparative Method

Comparative reconstruction consists of three essential steps:

1. Align the segments in the (putative) cognates;

2. Find correspondence sets (corresponding to proto-allophones);

3. Identify some correspondence sets as phonetically conditioned variants of
others (thereby reconstructing proto-phonemes).

Kay (1964) noted that the “right” set of alignments (of each of the cognate pairs) is the
set that produces the smallest total number of sound correspondences. Steps 1 and 2
could therefore be automated by generating all possible alignments of all of the cognate
pairs, then choosing the set of alignments that gives the fewest correspondence sets.

As Kay notes, this is not practical. Suppose the putative cognates are each 3 segments
long. There are then 9 different alignments of each cognate pair, and if 100 cognate pairs
are to be considered, there are 9100

� 2:65� 1095 sets of alignments to choose from, far
too many to try on even the fastest computer.

However, a guided search along the same lines might well be worthwhile. First
choose one alignment for each cognate pair — the best according to the evaluation

15



Computational Linguistics Volume ??, Number TO APPEAR IN COMPUTATIONAL LINGUISTICS

metric, or if several are equally good, choose one arbitrarily. Construct the entire set of
correspondence sets. Then go back and try one or two alternative alignments for each
cognate pair, noting whether the size of the set of correspondence sets descreases. If so,
adopt the new alignment instead of the previous one. For a set of 100 cognate pairs,
this requires a total of only a few hundred steps, and the result should be close to the
optimal solution. Reduction of correspondence sets to proto-phonemes is, of course,
a separate task requiring a knowledge base of phonological features and information
about phonetic plausibility.

Appendix: Size of the search space

The total number of alignments of a pair of words of lengths m and n can be calculated
as follows.4 Recall that a match consumes a segment of both words; a skip consumes
a segment from one word but not the other. The complete alignment has to consume
all the segments of both words. Accordingly, any alignment containing k matches must
also contain m � k skips on the first word and n � k skips on the second word. The
number of matches k in turn ranges from 0 to min(m;n). Thus, in general, the number
of possible alignments is

Alignments(m;n) =

min(m;n)X

k=0

number of alignments containing k matches

Without the no-alternate-skip rule, the number of alignments containing k matches is
simply the number of ways of partitioning a set of k + (m � k) + (n � k) = m + n � k
moves into k matches, m� k skips on word 1, and n� k skips on word 2:

Alignments(m;n) =

min(m;n)X

k=0

(m+ n� k)!
k!(m� k)!(n� k)!

(To give you an idea of the magnitude, this is close to 5n=2 for cases where m = n and
n < 20 or so.)

With the no-alternate-skip rule, the number of alignments is exponentially smaller
(about 3n�1 when m = n) and can be calculated from the recurrence relation

a(m;n) = a(m� 1; n� 1) +
n�2X

i=0

a(m� 1; i) +
m�2X

i=0

a(i; n� 1)

with the initial conditions a(0; n) = a(m; 0) = 1; for a derivation of this formula see
Covington and Canfield (in preparation).

4 For assistance with mathematics here I am greatly indebted to E. Rodney Canfield. I also want to thank
other mathematicians who offered helpful advice, among them John Kececioglu, Jeff Clark, Jan Willem
Nienhuys, Oscar Lanzi III, Les Reid, and other participants in sci.math on the Internet.

16



Covington An Algorithm to Align Words

References

Anttila, Raimo (1989) Historical and
comparative linguistics. 2nd revised edition.
(Amsterdam Studies in the Theory and
History of Linguistic Science, IV: Current
Issues in Linguistic Theory, 6.)
Amsterdam: Benjamins.

Bloomfield, Leonard (1941) “Algonquian.”
Linguistic Structures of Native America, ed.
C. Osgood, 85–129. (Viking Fund
Publications in Anthropology, 6.) Reprint,
New York: Johnson Reprint Corporation,
1963.

Covington, Michael A., and Canfield, E.
Rodney (in preparation) The number of
distinct alignments of two strings. Research
report, Artificial Intelligence Center, The
University of Georgia.

Frantz, Donald G. (1970) A PL/1 program to
assist the comparative linguist.
Communications of the ACM 13:353–356.

Guy, Jacques B. M. (1994) An algorithm for
identifying cognates in bilingual wordlists
and its applicability to machine translation.
Journal of Quantitative Linguistics 1:35–42.

Hewson, John (1974) Comparative
reconstruction on the computer. John M.
Anderson and Charles Jones, eds.,
Historical linguistics I: syntax, morphology,
internal and comparative reconstruction,
191–197. Amsterdam: North Holland.

Kay, Martin (1964) The logic of cognate
rcognition in historical linguistics.
(Memorandum RM-4224-PR.) Santa
Monica: The RAND Corporation.

Kececioglu, John (1993) The maximum
weight trace problem in multiple sequence
alignment. Combinatorial pattern matching:
4th annual symposium, ed. A. Apostolico et
al., 106–119. Berlin: Springer.

Lowe, John B., and Mazaudon, Martine
(1994) The Reconstruction Engine: a
computer implementation of the
comparative method. Computational
Linguistics 20:381–417.

Ringe, Donald A., Jr. (1992) On calculating the
factor of chance in language comparison.
Philadelphia: American Philosophical
Society.

Sankoff, David, and Kruskal, Joseph B., eds.
(1983) Time warps, string edits, and
macromolecules: the theory and practice of
sequence comparison. Reading, Mass.:
Addison-Wesley.

Ukkonen, Esko (1985) Algorithms for
approximate string matching. Information
and Control 64:100–118.

Waterman, Michael S. (1995) Introduction to
computational biology: maps, sequences and
genomes. London: Chapman & Hall.

Wimbish, John S. (1989) WORDSURV: a
program for analyzing language survey word
lists. Dallas: Summer Institute of
Linguistics. Cited by Lowe and Mazaudon
(1994).

17


