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To the reader

This book is for computer science students who want to
review their course material quickly.

The book is divided into short chapters called Keys,
grouped into units called Themes. Each Theme begins with
an overview of one area of computer science.

Unlike other fields, computer science does not normally
begin with a “‘survey course.’’ Thus there is no course that
covers everything in this book. Parts of this book are sure to
be unfamiliar to you. Make the most of what interests you or
corresponds to the course you have taken.

You don’t have to take the sections in the order in which
they’re printed, either; feel free to skip around.

The computer programs in this book are written in Turbo
Pascal 5.5 unless otherwise noted. They were written to be
understandable, not efficient. They are designed to
help you understand how computations are done; they are
not always designed for use ‘‘as is’’ on the computer.
Sometimes they leave out declarations or other necessary
material.

I want to thank numerous colleagues for help with this
book (especially Doug Downing, Don Potter, Dan Everett,
Jim Koehler, and Jeff Prosise); my daughters Sharon and
Cathy, who put up with a certain lack of ‘‘daddy time’’ this
summer; and especially my wife Melody, who prodded me
to buy a laptop computer without which the book would not
have been finished on time.

University of Georgia
September 1990

Michael A. Covington

Theme I HOW COMPUTERS WORK

Computer science is the study of the general principles
that hold true for many or all computers, rather than the
arbitrary details involved in using a particular program. Th@s
Theme deals with how computers work on the most basic
level. Modern computers are digital, which means they rep-
resent information with two kinds of electrical signals,
called ““on’’ and “‘off,”” “‘1> and “‘0,” or ‘‘true’’ and
““false.’” Each signal of this kind is called a bit, and com-
binations of bits represent numbers and printed characters.
The main parts of a computer are the central processing unit
(CPU), memory, and input-output devices. A progrant,
stored in the computer, tells the CPU what to do.

INDIVIDUAL KEYS IN THIS THEME
1 How computers work
2 Parts of a computer

Micro-, mini-, and mainframe
computers

Bit patterns: binary, hex, octal
Character sets

CPU and bus

CPU architectures
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Key 1 How computers work

OVERVIEW  Almost all modern computers use Von Neu-
mann architecture. This means that the computer consists of
a central processing unit (CPU) together with memory,
plus input-output (i-0) devices such as screen, keyboard,
and printer.

The CPU: All computation goes on in the central processing unit
(CPU), which controls the rest of the computer.
* The CPU is controlled by a program consisting of instruction
codes stored in memory.
* Memory also contains the data (information) that the computer is
to work on.

Bits: All the contents of memory—instructions as well as data~—consist
of groups of bits. A bit is a signal with two possible values, called
‘lon” and “Off,1’ L‘truc)) and lLfalse1” Or lll,! and ‘10"1

Bytes: Most computer memories store bits in groups of 8, called bytes.
Sometimes they use larger groups called words.

Biriary number: We can interpret any series of bits as a binary (base-2)
number. Computers do arithmetic on bit patterns by interpreting
them as numbers in this way.

Characters: Groups of bits can also stand for letters, digits, etc., one
byte per character. Most computers use the ASCII character set
(American Standard Code for Information Interchange).

The bus: The CPU communicates with memory and i-o devices via the
bus, which is a system of parallel connections.
* Each memory location and i-o device recognizes a unique address
that can be placed on address lines of the bus to identify it.
* Each address is simply a bit pattern.

KEY EXAMPLE

To store bit pattern 00011100 at location 00000001, the computer places
the address 00000001 on the address part of the bus and the value
00011100 on the data part of the bus.

Key 2 Parts of a computer

OVERVIEW When we say ‘‘computer,”’ we almost al-
ways mean a digital computer with Von Neumann architec-

ture.

Digital computers: Digital means that the computer represents all ir}for-
mation (data) in the form of bits, electrical signals that are either
“‘on’” or ‘‘off’” with no value in between. (A computer with more
than two values would still be digital, provided the values were sharp-
ly distinet.)

Von Neumann architecture: Von Neumann architecture (invented by
John Von Neumann, 1903-1957) means that the actions of the com-
puter are controlled by a program stored in memory. Programs are
called software and are distinct from the machine itseif (hard-
ware).

KEY PARTS OF A COMPUTER

Memory: Where data and instructions are stored while being pro-

cessed. :

¢« ROM (read-only memory) is permanently recorded and cannot
be changed; ROM contains instructions that control the computer
when it is first turned on. ' ‘

¢« RAM (random-access memory) contains all other instructions
and data; on most computers RAM goes blank when the computer
is turned off.

Input-output (i-0) devices: Keyboard, screen, printer, disk drives, etc.,
that enable the computer to communicate with the outside world and
to store information permanently.

The central processing unit (CPU): Spends its time reading instruction
codes from memory and obeying (executing) them.




Key 3 Micro-, mini-, and mainframe

computers

OVERVIEW  Computers are classified as mainframe,
minicomputer, or microcomputer. (See Keys 13-14 on su-
percomputers. )

Mainframe computers: Complete computer fills a room; CPU is the
size of a refrigerator. The word ‘‘mainframe’’ also refers to the cab-
inet or frame in which the parts of the CPU are mounted. Examples:
IBM 370, IBM 3090, CDC CYBER, largest models of Digital Equip-
ment Corporation VAX.

* Mainframe computers are big enough for the largest businesses
and research institutions.

* Hundreds of people at terminals can use a mainframe computer at
once. A terminal is a screen plus a keyboard,

Minicomputers: CPU fits on one or two printed circuit boards; whole
machine fits into one large box. Adequate for a medium-sized busi-
ness or a single university department. Examples: IBM AS/400, Dig-
ital Equipment Corporation VAX (most models), Data General
Eclipse.

Microcomputers: Entire CPU on a single chip of silicon. Such a CPU is
called a microprocessor and is a type of integrated circuit (IC).
¢ ICs are made by putting different impurities in different places on

the same chip of silicon, so that it becomes a whole set of inter-
connected components (transistors, diodes, resistors, etc.).

* Early microcomputers: Apple II, TRS-80 Model 1, Commodore
PET (all introduced 1977).

o IBM PC (1981) was the first microcomputer widely used in busi-
ness and industry; compatible machines from other makers
(clones) immediately appeared on the market,

* Supermicros (workstations) such as NeXT, Sun Sparcstation,
IBM 6000 are as powerful as the mainframes of a few years
earlier.

Key 4 Bit patterns: binary, hex, and
octal

OVERVIEW  Computers represent all information as bits
(Key 2). Bit patterns can be interpreted as numbers.

Binary and hex numbers: Any series of bits can be interpreted as a
binary (base-2) number. In binary, the only digits are 0 and 1, and
instead of 1s, 10s, and 100s, the columnar positions stand for 1s, 2s,
4s, 8s, etc.

Hex numbers: Computer programmers also use hexadecimal (‘‘hex’”)

(base-16) numbers, in which the digits are 0, 1, 2, 3, 4,5,6,7, 8,9,
A, B, C, D, E, F, and the columns stand for Is, 16s, 256s, etc.

KEY EXAMPLE

The number 230 represented 3 ways

128s
64s
32s
16s
8s
4s 100s
2s 16s 10s
‘ 1s Is Is
| | l
11100110 = E 6 = 230
Binary Hexadecimal Decimal
(Base 2) (Base 16) (Base
10)

Hex as abbreviations for binury: Each hex digit corresponds to 4

binary digits.
= 1110, 6 = 0110, so E6 = 11100110.
Translating binary to hex is much easier than binary to decimal. You
can take digits in groups of 4, without looking at the entire number.
This makes hex a handy way of abbreviating binary numbers.
s On some computers, octal (base 8) numbers are used to abbreviate
binary numbers by taking digits in groups of 3 instead of 4.



Key 5 Character sets

OVERVIEW To use keyboards, screens, and printers,
the computer represents each character as a bit pattern.
ASCII code is a common way of representing each charac-
ter with 8 bits.

ASCII character set (American Standard Code for Information Inter-
change): In ASCII, bit pattern 01000001 (hex 41) represents A,
00100010 (hex 42) represents B, and so forth. (See Table 1.)

Codes for the digits 0-9 are not the numbers 0 to 9.

ASCII codes 0-31 and 127 are control codes, not printable char-
acters.

Not all control codes have agreed-upon meanings.

Ctrl-L (““form feed’') usually makes a printer start a new page.
Cirl-S usually makes the computer stop sending information to the
terminal, and Ctrl-Q makes it resume.

Other character sets: Some of these are variations of ASCII; others are
very different. For example:

.

The IBM PC character set consists of ASCII plus additional
codes in the range 128-255. For example, 137 is &, 247 is ~. This
includes box-drawing characters such as:

218 ¢ 1917 196 — 179 | 197 + 192 L 2174
IBM mainframes use the EBCDIC character set (Extended Bina-
ry-Coded Decimal Interchange Code); this works like ASCII but
uses different codes and makes it easier to convert digits to num-
bers.

Character sets for foreign languages have been developed. In Chi-
nese and Japanese, two bytes are used for each character; this
allows 65,536 different codes.

TABLE 1.

ASCII character set
Decimal

VO LND—=O

Hex

How
typed

Cul-@
Ctrl-A
Ctrl-B
Ctrl-C
Ctrl-D
Ctl-E
Ctrl-F
Ctrl-G
Ctrl-H
Tab
Cirl-J
Cul-K
Curl-L
Return
Cul-N
Ctrl-O
Cul-P
Cul-Q
Ctrl-R
Ctrl-S
Curl-T
Ctrl-U
Ctrl-V
Curl-W
Ctrl-X
Cul-Y
Cul-Z
Escape
Ctr]-\
Ctrl-)
Ctrl-"
Ctrl-_

Decimal
Hex
Character

32 20 Space 64
33 21 ! 65
34 22 7 66
35 23 # 67
36 24 § 68
37 25 % 69
38 26 & 70
39 27 71
40 28 ( 72
41 290 ) 73
42 2A % 74
43 2B + 75
4 2C 76
45 2D -— 77
46 2E . 78
47 2F |/ 79
48 30 O 80
49 31 1 81
50 32 2 82
51 33 3 83
52 34 4 84
53 35 5§ 85
54 36 6 86
55 37 7 87
56 38 8 88
57 3 9 89
58 3A 90
59 3B ; 91
60 3C < 92
61 3D = 93
62 3E > 94
63 3F ? 95

41
42
43

45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
SB
5C
5D
5E
SF

I TN KE<CH IO VO ZZIDOR T T I QTUEHOOW»

96

97

98

99
100
101
102
103
104
105
106
107
108
109
1o
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

61
62
63

65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
TA
7B
7C
7D
7E
7F
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Key 6 CPU and bus

OVERVIEW The CPU communicates with the rest of the
computer via the bus, a system of parallel connections.

Inside the CPU: The CPU (central processing unit) of a computer
contains functional units, which are circuits that perform operations
(add, subtract, compare, shift, store, etc.), and registers, which are
places data can be held temporarily.

Words: The amount of data that a register can hold is called a word; for
example, a ‘‘16-bit’’ CPU has registers that hold 16 bits each.

The bus: The CPU communicates with memory and with input-output
devices via the bus, a system of parallel wires or connections that
makes it possible to connect all parts of the computer in parallel,
rather than connecting each of them separately to each of the
others.

Using the bus for communication: Each memory location holds one
byte (8 bits) and has a unique address (a bit pattern that identifies the
location, regardless of what is stored there). (Some computers assign
addresses to words rather than bytes.)

* The bus consists of data lines, address lines, and a few lines for
control signals (Figure 1).

* To read a byte from memory, the CPU places the address on the
address lines (one bit on each address line), then puts a 1 on the
“‘Read Memory’’ line. Memory responds by retrieving the byte
from that address and placing it on the data lines (one bit on each
data line), from which the CPU can obtain it.

* To store a byte into memory, the CPU places the address on the
address lines and the data on the data lines, then places a 1 on the
““Write Memory’’ line. Memory accepts the byte and stores it at
the specified address.

FIGURE 1

The bus is a system of parallel wires or connections that link the CPU to memory and input-output devices.

Memory

7

Input-output devices

N

Data lines (at least 8)

Address lincs (at lcast 16)

“Read Memory” line

“Writc Mcmory” line

CPU




Key 7 CPU architectures

OVERVIEW  The performance of a computer depends on
the design of the CPU.

Clock speed: The step-by-step operation of the CPU is controlled by an
electrical signal called the clock that constantly switches back and
forth from O to 1. The speed (frequency) of the clock is measured in
megahertz (MHz) (millions of cycles per second).

* A 20-MHz CPU is twice as fast as a 10-MHz CPU—but only if
they are otherwise identical in design.

* Most speed differences between computers come from differences
in design, not differences in clock speed.

Registers: CPUs differ in the number of registers (temporary holding
places for data; there are normally 4 to 16) and the number of bits in
each (the word length, usually 8, 16, or 32).

Instruction set: All CPUs can do integer arithmetic and compare bit
patterns, and do logical operations on bits (Key 9). Some CPUs can
also do floating-point arithmetic, fast text searching, and other
things. On simpler CPUs, the programmer has to construct these
operations out of simpler operations that the CPU provides.

RISC vs. CISC

A complex instruction set computer (CISC) has many operations built
in, most or all of which take more than one clock cycle. Examples: IBM
370, IBM 3090, DEC VAX, almost all microcomputers. A reduced
instruction set computer (RISC) has fewer operations built in, but each
operation takes only one clock cycle. Examples: Sun Sparcstation, IBM
6000. RISC is faster if memory is relatively fast, so that no time is
wasted fetching the instructions. CISC is faster if memory is relatively
slow, because the same work can be done without fetching as many
instruction codes.

10

Theme 2 COMPUTER
ARCHITECTURE

omputer architecture is the study of how computers are

designed and built. The CPU of a computer is made of
logic circuits, which are simple electronic circuits that oper-
ate on bits. Modern computers get their versatility from the
fact that they are controlled by programs stored in memory.
Alongside conventional digital computers, there are sev-
eral other types, including supercomputers and parallel
computers.

INDIVIDUAL KEYS IN THIS THEME
8 Logic circuits
9 From logic gates to CPU
10 Input and output from the CPU’s

viewpoint

11 Programming: Machine and assembly
language

12 Programming: Compilers and
interpreters

13 Vector supercomputers
14 Parallel computers

11



Key 8 Logic circuits

OVERVIEW  Computers rely on the fact that a transistor
conducts electricity in one place when a voltage is applied in
another place. Thus a signal in one place can produce a
signal (the same or different) in another place.

Transistors: A transistor conducts electricity when a signal is applied
to its input. (Some early computers achieved this effect with electro-
magnets flipping switches. Slightly later computers used vacuum
tubes.)

« The field-effect transistor in Figure 2A conducts when its input is
+ 5 volts but not when its input is 0 volts.

¢ When the transistor is conducting, the output is 0 volts because the
transistor provides a path from output to ground (0 V). But when
the transistor is not conducting, the output is + 5 V through the
Tesistor.

NOT gates: This circuit is called a NOT gate. Let + 5 volts represent
binary 1, and let O volts represent binary 0. Then the NOT gate turns
any bit into its opposite: its output is 1 when the input is 0, and vice
versa. This is called the logical NOT operation.

NOR gates: Figure 2B shows a NOR gate. Its output is 0 whenever at
least one of the inputs is 1 (because the output is connected to ground
whenever at least one transistor is conducting). Alongside the NOR
gate is shown its truth table.

Other gates: NOR and NOT gates can be combined to build other gates.
Figure 2C shows AND, OR, and NAND gates with their truth
tables. These truth tables are just like those used in formal logic
(Boolean algebra), and every logic circuit is the implementation of a
logical formula.

Decoders: Also shown is a decoder, a circuit that recognizes a particular
bit pattern. CPUs use decoders to recognize instruction codes.

12

Key 9 From logic gates to CPU

OVERVIEW Logic gates can do computations, such as
adding numbers. Sequential logic circuits such as flip-flops
can store data temporarily. A CPU consists of functional
units such as adder, multiplier, etc. (made of gates), decod-
ers (Key 8) to recognize instruction codes, and registers
(made of flip-flops) to hold data.

Arithmetic: Logic gates (combinatorial logic circuits) can do compu-
tations. Gates can be built with appropriate truth tables to do subtrac-
tion, comparison, and other operations.

e Figure 3A shows a gate called full adder that adds 3 one-digit
binary numbers, together with its truth table. (A half adder adds
only 2 numbers.)

« Figure 3B shows how to combine four 1-bit adders to make a 4-bit
adder. The same could be done for 8, 16, or any number of
bits.

* The 4-bit adder adds only 2 numbers even though it is made of
3-input adders. The third input on each of the adders receives a
digit carried from the previous adder. This is just like carrying in
pencil-and-paper arithmetic.

¢ This 4-bit adder alse detects overflow, what happens when a num-
ber is too large to fit in the available number of bits. Example:
1111 + 1111 = 11110, which is too big to fit into 4 bits. If the
4-bit adder performs this operation, its overflow-indicating output
will be 1.

Sequential logic circuits: Unlike combinatorial circuits, these work
through one operation after another, step by step.

Flip-flop: The basis of all sequential logic is the flip-flop, a logic circuit
that can remember its previous state, shown in Figure 3C. The two
inputs are called S (set) and R (reset).

KEY EXAMPLE: How a flip-flop works (Figure 3C)

If S =0 and R = 0, the output is initially unpredictable. To ‘‘set’’ the
flip-flop, let S = 1. Then Q becomes 0. Now let S drop back to 0, and Q
will remain 0. But if you then ‘‘reset’’ the flip-flop by letting R =1, Q
will become 1 and will remain so after R drops back to 0. The flip-flop
“‘remembers.”’

13



FIGURE 2
A.NOT gate
+5V A
SYMBOL:
OUTPUT
1 ; TRUTH TABLE:

Transistor conducts
INPUT <1 only when

inputis +5 V

0V ("ground")

B. NOR gate

+5V _
SYMBOL:
TRUTH TABLE:

OUTPUT

B I I

(binary0=0V, 1 =+5 V).

Input 1 ‘ Input 2 ‘ Output

INPUT 1l 4‘1 I* lINPUT2 0

0
1
0V ("ground™) !

0

1
0
1

1

0
0
0
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FIGURE 2 (continued)

C. Other gates made from NOR and NOT gates

OR gate:

= D>

7

—_—

AND gate:

D

¥

NAND gate:

¢

Decoder for bit pattern 0110

Input ! | Input2 | Output

- o = O
—_ e

Input 1 | Input?2 | Qutput

0 0 0
0 1 0
1 0 0
1 1 1

Input 1 | Input 2 I Output
0 0 1

] 0 I 1
1 0 1
1 1 0

(a similar decoder could be built for any other bit pattern):

Input Input Input Input

1 2 3 4 |Output
0 1 1 0 1
All other combinations 0
1234
15



FIGURE 3

A. 3—input 1-bit binary adder (“full adder")

Inputs | Outputs Binary
C B A|lSI SO arithmetic
A Sl — 000 0 O 0+0+0= 0
— 0 0 1 0 1 0+0+1=1
SO |— 010 0 1 0+1+0=1
— C 011 1 0 O+1+1=10
1 00 0 1 1+0+0
1 01 1 0 [+0+1=10
I 10 1 0 l+1+0=10
I 11 1 1 I+1+1=11

B. 4—-bit adder made from 4 1-bit adders

Overflow indicator

Output
(4 bits)
Inputs
(two 4-bit
numbers)

Inputs | Outputs

S R|Q Q

1 0 1 0

0 1 0 I

0 O Remains the same
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Key 10 Input and output from the

CPU’s viewpoint

OVERVIEW The CPU uses the bus not only to commu-
nicate with memory, but also to communicate with input-
output (i-o) devices.

Memory-mapped i-0: The simplest way for the CPU to communicate
with i-o devices is to use memory-mapped i-¢, in which some mem-
ory addresses are set aside for i-o devices rather than real memory.
Example: On the IBM PC, one way to display characters on the
screen is simply to store them at memory addresses BOOOO to BO7CF
(videc memory).

* On some computers, data received from the keyboard or other
devices automatically appears at certain memory addresses, ready
for the CPU to read it.

¢ Memory-mapped i-o is fast, but it uses up addresses that could
otherwise be used for ordinary memory.

Port addresses: The alternative is to assign port addresses to i-o
devices. These work like memory addresses but do not refer to mem-
ory locations. The CPU reads or writes a port address by activating
the “‘Read I-O’’ or ““Write I-O’’ control line instead of ‘‘Read Mem-
ory’’ or ‘‘Write Memory.”’

Controllers: Many i-o devices have controllers, which are really spe-
cial-purpose CPUs that execute instruction codes of their own. Rather
than handling every detail of i-o by itself, the CPU can give instruc-
tions to the controllers.

» Disk drives, video screens, and serial communication ports usual-
ly have controllers.

» Disk drive controllers often have direct memory access (DMA).
This means, for example, that the CPU can tell the disk controller
to copy a particular block of data from memory to disk, and the
disk controller can obtain the data from memory without further
help from the CPU.

17
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FIGURE 4

Input-output devices on the bus are activated by the “Read I-O” and “Write I-O” control signals.

il

1|

A

R

Memory

Data lines (at least 8)

Address lines (at least 16)

“Read Memory” line

“Write Memory” line

“Read I-O” line

“Write I-O” line

CPU

Printer port,

disk controller, etc.

Key 11 Programming: Machine
and assembly language

OVERVIEW A program is a series of instruction codes
for the CPU to execute.

KEY EXAMPLE

This program for the IBM PC wastes time for about half a second (a way
to make the computer pause after writing information on the screen). The
program stores 0000 in the AX register, keeps adding | until an overflow
occurs, then terminates itself by returning control to the operating sys-
tem (Keys 15-23).

Address Instruction Assembly Explanation

code (hex) language
0100 B8 MOV AX, 0000 Store 0000 in AX register
0101 00
0102 00 .
0103 40 A: INC AX Add 1 to AX register
0104 71 JNO A If no overflow occurred,
0105 FD jump to ‘“A’’ (address 0103)
0106 CD INT 20H Call interrupt service rou-
0107 20 tine 20 (terminate program)

Machine and assembly language: Instruction codes are referred to as
machine language, but programmers normally use assembly lan-
guage, a set of abbreviations (mnemonics) for instruction codes.

Assemblers: After writing a program in assembly language, the pro-
grammer runs a program called an assembler to translate it into the
actual mstruction codes, which can then be loaded into memory and
executed.

Interrupts and system services: The last instruction in this program,
INT 20H, is an interrupt. It tells the CPU to stop whatever it is
doing, execute interrupt service routine number 20 (hex), and then
resume Where it left off.

* Onthe PC, this is a way to get services from the operating system.

» Other kinds of computers use interrupts only to deal with external
events (keys pressed on the keyboard, etc.).

¢ All CPUs have some way of calling a subroutine (executing
codes that are stored elsewhere, then continuing with the main
program). The PC itself has a CALL instruction distinct from INT.

19



Key 12 Programming: Compilers and

interpreters

OVERVIEW Instead of assembly language, most pro-
grams are written in high-level programming languages
like BASIC, Pascal, or C. High-level languages allow pro-
grammers to express instructions in a notation that fits the
work to be done, rather than in CPU instruction codes.

Advantages of high-level languages:

¢ High-level languages are portable.
A Pascal program will run, with little or no change, on any com-
puter that has Pascal.
A machine-language or assembly-language program will run only
on the type of CPU for which it was written.

¢ High-level languages are concise.
High-level languages allow the programimer to express common
operations simply even if they are not simple for the CPU. Exam-
ple: Finding a square root takes 50—100 lines of assembly lan-
guage code, but in Pascal the programmer need only write sqrt .

How high-level languages are used:

* High-level languages must be translated into machine language
in order for the program to run. This is done by a program called a
compiler.

= An alternative is to use an interpreter, which does not produce a
translation, but instead, reads the high-level-language program
one step at a time and immediately does whatever the program
says to do.

KEY EXAMPLE

Program from Key 11, rewritten in Pascal

Pascal language Explanation

program demo; Name of program is ‘‘demo’’

var X: integer; X will contain an integer (whole number)

begin Beginning of instructions
X:=0; Store 0 in X
repeat Repeat the following instruction:
X =X+1 Add 1to X
until (X = 32767) Stop repeating when X = 32767
end. End of program
20

Key 13 Vector supercomputers

OVERVIEW  Supercomputers use unconventional archi-
tectures to do computations much faster than conventional
computers.

The bottlenecks in a conventional computer: Only a small part of a

conventional computer is in use at any time, for two reasons:

¢ No way to work on more than one memory location at the same
time. All communication between CPU and memory takes place
one byte or word at a time. The rest of memory is idle. This is
called the Babbage bottleneck and goes back to mechanical cal-
culators made by Charles Babbage in the 19th century.

¢ No way to do more than one operation at a time. The CPU has
circuvits to add, multiply, compare, fetch, store, etc., but at any
moment only one of these is in use; the rest of the CPU is idle. This
is called the Von Neumann bottleneck since it stems from Von
Neumann'’s idea of having instruction codes select particular func-
tional units (Keys 2, 9).

Vector supercomputers: These (Cray, NEC, Fujitsu) overcome the
Von Neumann bottleneck by using a single instruction code to per-
form the same calculations on a series of different numbers. Example:
With a single instruction code, a Cray Y-MP can add two 64-
element sequences (vectors) of numbers, storing the results in a third
64-clement vector.
= During this 64-step process, all applicable parts of the CPU are

working simultaneously, like an assembly line. One functional
unit is adding two numbers; another is storing the result of the
previous addition; another is fetching the next numbers to be add-
ed; and another is calculating the addresses of the numbers to be
added after that.

e Some conventional CPUs, such as the IBM 6000, get some of the
advantages of a vector machine by having some ability use more
than one functional unit at a time. For example, such a machine
can do an addition and a multiplication at the same time instead of
doing one right after the other.
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Key 14 Parallel computers

OVERVIEW A parallel computer is a computer that exe-
cutes more than one program or section of a program at
once, thereby overcoming the Von Neumann bottleneck

(Key 13).

Multiprocessing: The simplest parallel computers have two or three
CPUs running different programs while sharing i-o devices and pos-
sibly some memory. Some mainframe computers have worked this
way since the 1960s, but with this setup, there is seldom any paral-
lelism within a single program.

Parallelism: True paralel computing allows a single program to use
more than one CPU. The programmer divides the program into sec-
tions.and specifies which sections can be run simultaneously on dif-
ferent TPUs.

Architectures: Connections between CPUs are important -in paralie]
computer design. It is usually not feasible to link each CPU directly to
all of the others; that would require too many connections.

e One option is to link all the CPUs via a single shared bus (Key 6)
or ring (compare Key 25), or through shared memory.

* Another is to use a crossbar switch to connect any CPU to any
other CPU when needed.

* The hypercube architecture of the Intel iPSC is based on an
imaginary 4-dimensional cube. It has 8 corners (CPUs) each of
which is connected directly to 4 others. Any CPU can send a
message to any other with at most 3 additional CPUs in between.

e Massively parallel (connectionist) computers use a large num-
ber of CPUs each of which stores data as well as performing
computations. In effect, memory is stored in a huge array of tiny
CPUs. Connectionist computers are especially good for image
processing (Key 64) and neural networks (Key 73).

Power of parallel computers: Parallel computers are faster than con-
ventional (serial) computers, but not, in principle, more powerful.
Any parailel computer can be simulated by a serial computer.
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Theme 3 OPERATING SYSTEMS

he operating system of a computer is the program that

controls its overall operation and enables it to run other
programs. The process of starting up the operating system is
called bootstrapping or booting. The operating system pro-
vides many services to the user’s programs; the most impor-
tant is that it maintains disk files, with a set of directories
containing the names and locations of all files. Popular oper-
ating systems include UNIX, MS-DOS, VM/CMS, and
graphical operating systems such as that of the Macin-
tosh.

INDIVIDUAL KEYS IN THIS THEME
15 ‘“‘Bootstrapping’’

16 Disks

17 Files

18 Operating system services

19 Multitasking and virtual memory
20 UNIX

21 MS-DOS and OS/2

22 08/360, MVS, and VM/CMS
23 Graphical operating systems
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Key 15 ‘‘Bootstrapping”’

OVERVIEW  To start up a computer, it is necessary to
give the CPU some instruction codes that will cause it to
read more instructions from disk, then execute them. This
process is called bootstrapping or booting.

Early computers: To start up the earliest computers, the operator had to
put some instruction codes into memory by flipping switches. These
instruction codes constituted a short program called a loader. The
loader made the CPU copy further codes into memory from some i-0
device, such as a card reader, and then execute them.

* Typically, the first program that the CPU would load was a bigger
and better loader. This, in turn, would load the user’s program. So
to get started, the computer had to “‘pull itself up by its own
bootstraps,’’ a process that came to be called bootstrapping or
simply booting.

¢ If a program fails to terminate properly, one can reboot the com-
puter (make it start afresh).

Booting 2 modern computer: All modern computers have some per-
manently recorded read-only memory (ROM) containing instruc-
tion codes to get them started. Thus there is no need to flip
switches.

* Instead of just a loader, the computer normally loads an operating
system into memory from disk. The operating system controls the
computer when no other program is running. Part of the operating
system stays in memory so that it can regain control when the
user’s program ends.

* The operating systern can accept commands from the user. Exam-
ples From IBM PC: dir displays a list of files on the disk; cls
clears the screen; qweTty is not a built-in command, so the oper-
ating system tries to find a program called QWERTY.EXE and
run it.

* The operating system also provides services to users’ programs.
Example: To read data from disk, a program need not give instruc-
tions to the disk controller; it just tells the operating system, ‘‘Give
me the first 52 bytes of file ABCDEF,”’ or the like.
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Key 16 Disks

OVERVIEW  For permanent data storage, most comput-
ers rely on magnetic disks. These include permanently

mounted fixed disks (hard disks) and removable dis-
kettes.

Disks: For permanent storage of data, most computers use magnetic
media consisting of plastic with a magnetizable coating; information
is stored by magnetizing a pattern in the coating. Most computers use
magnetic disks, either
¢ permanently mounted hard disks (fixed disks) inside the ma-

chine, or
¢ removable diskettes (formerly called floppy disks, but the newer
ones have rigid shells).

Tapes: Some computers also use tapes, especially for long-term
backup.

Speed: Disks are many times slower than memory (RAM or ROM);
tapes are slower yet. But they are cheap and permanent.

Role of the operating system: The operating system manages disk stor-

age.

¢ Data stored on disk is arranged into files. Each file has a unique
name and usually consists of a complete program, a word process-
ing document, a graphical image, or the like.

* FEach file occupies one or more sectors (Figure 5) on the disk.
Each sector contains the same number of bytes (typically 128).

» Sectors are arranged in concentric tracks.

¢ When a new diskette is put in the computer, the user has to format
it by running a program that creates the pattern of sectors and
tracks.

Sector, cylinder, and head: A cylinder consists of the corresponding
tracks on both sides of a diskette, or on all layers of a multi-layer
fixed disk. Each side or layer has a separate head (magnetic read-
write unit). Any location on the disk can be identified by its sector
number, cylinder number, and head number. (The IBM PC also
numbers clusters, which are groups of sectors.)
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FIGURE 5

Each surface of a disk is organized into tracks and sectors.
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Key 17 Files

OVERVIEW Data on disks is organized into files, which
are in turn grouped into directories.

Files: Programs refer to files by file name, not location. The sectors
occupied by a file do not need to be next to each other; they can be
anywhere on the disk.

Directories: In a special location on each disk, the operating system
maintains a directory giving the names of all the files and the sectors
that they occupy. Regardless of what directory a file is listed in, it can
occupy space anywhere on the disk.

Reading and writing: When a program reads or writes a file, the oper-
ating system computes the appropriate locations on the disk and sends
them to the disk controller.

Subdirectories: Most newer operating systems let you establish subdi-
rectories, directories that reside in special files.

* The main (root) directory lists some files and some subdirectories
containing files and/or more subdirectories. This makes it easy to
keep related files together. Example: A file name such as
\AAA\BBB\CCC\DDD means ‘‘File DDD in directory CCC, which
is in directory BBB, which is in directory AAA, which is in the
root directory.”’

Erase: To erase (delete) a file, the operating system removes the file’s
name from the directory and marks as empty the sectors occupied by
the file. The data in those sectors, however, does not get erased until
the sectors are actually needed for another file.

Unerase: Thus, if a file is erased accidentally, it is often possible to
unerase it, provided nothing else has been written to the same area of
the disk and the disk has not been formatted again.
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Key 18 Operating system services

OVERVIEW  The operating system provides many ser-
vices to application programs. These include creating,
reading, writing, and deleting files, and access to other i-o
devices such as keyboard, screen, and printer.

Purpose: Relying on the operating system to perform i-o saves the appli-
cation programmer some work. More importantly, it insulates the
program from the details of the machine on which it is running.
Example: The machine instructions that clear the screen are different
on each of the IBM PC’s many different video adapters. But a pro-
gram that asks the operating system to clear the screen need not con-
cern itself with this. The operating system will handle any video
adapter correctly.

Subroutines: Programs usually obtain services through subroutine
calls. An application program calls an operating system routine the
same way that the program- would call another section of its own
code. The main program resumes when the subroutine finishes.

Interrupts: Some computers provide operating system services through
interrupts. An interrupt is a special CPU instruction to interrupt a
program, jump to an interrupt service routine, and resume the main
program when the service routine finishes.

* Interrupts were originally intended to deal with external events
(keys pressed, etc.). Their use as a substitute for subroutine calls
has been criticized.

IBM PC: A well-known peculiarity of the IBM PC is that its operating
system is divided into two parts that provide overlapping services:
* BIOS (Basic Input-Output System), a set of routines permanently

recorded in a ROM chip

* DOS (Disk Operating System), which is loaded from disk
Example: To write on the screen, a program can either call DOS
through interrupt 21 or call BIOS through interrupt 10, or even store
data directly into video memory.
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Key 19 Multitasking and virtual

memory

OVERVIEW All but the smallest computers can run
more than one program at a time through multitasking.
Most operating systems also have virtual memory, which
is the ability to use disk space as a substitute for real
memory.

Uses for multitasking: Several people at terminals can use the same
computer at once, and one person can do two kinds of work at once
(e.g., editing one document while printing another).

Timesharing: Multitasking is achieved through timesharing. The CPU
loads several programs into memory, then switches its attention back
and forth between them many times per second. If one program has to
wait for a keystroke, or data from disk, the CPU can work on another
program rather than wasting time. Examples: UNIX, VAX/VMS,
0S/2, and the IBM mainframe operating systems support multitask-
ing; CP/M and MS-DOS (PC-DOS) do not.

Virtual memory: This is the use of disk space as a substitute for real
memory. This is handled by the operating system; the programs use
memory as if all of it were really present, and the operating system
swaps {copies) blocks of data (pages) back and forth from memory to
disk.

Speed: Virtual memory is slower than real memory, but the slowdown is
usually not serious because most programs do not use all their data at
the same time, so only a few swaps occur while running a program.
However, a situation called thrashing sometimes occurs.
¢ Suppose a program is working with two data items stored at widely
separate memory locations.

¢ Suppose further that the two items are so far apart that they get
swapped out separately — each one is on disk when the other is in
real memory.

¢ Then if the program is trying to use both data items at the same
time, the operating system will be swapping almost constantly
(‘‘thrashing’’). This causes a tremendous slowdown.
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Key 20 UNIX

OVERVIEW UNIX is in wide use on many different kinds
of computers. It has a very versatile command language.
UNIX introduced the concept of subdirectories and popular-
ized the C programming language; a C compiler is provided
with every implementation of UNIX. Innovative in many
ways, it may well be the most modern operating system in
wide use.

History: UNIX was developed at Bell Laboratories in the early 1970s as a
replacement for an carlier system called Multics, and originally
distributed to educational institutions at low cost, encouraging many of
the world’s best programmers to work with it and contribute improve-
ments. Several versions of UNIX are now commercial products.

Portability: Most operating systems are designed for a specific CPU, but
versions of UNIX run on almost all types of computers. UNIX is easy
to port (adapt) from one CPU to another because most of it is written,
not in assembly language, but in C, a high-level language that can be
compiled into efficient machine instructions. UNIX itself includes a
C compiler and is largely responsible for popularizing the C language
(Key 37).

Subdirectories: In UNIX, a disk has not only a main (roet) directory,
but also any number of additional directories (subdirectories) that
reside in special files. A subdirectory can be listed in the main direc-
tory or in another subdirectory. File names reflect this structure.
Example: The name (or rather path):

/usr/mcovington/programs/myprog.c
implies that the root directory contains a directory called usr, which
contains a directory called mcovington, which contains a directory
called programs, which contains a file called myprog. c. (Strictly
speaking, only myprog. ¢ is the file name.)

Multitasking: Several people can of course use the computer simulta-
neously from different terminals. More importantly, each user has
multiple processes; a fresh process is created for each command typed
on the keyboard. Normally, UNIX waits for each command to finish
before accepting the next one, but ending a command with *‘&’’ tells
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UNIX to accept the next command immediately. Example: The com-
mands

cc myprog.c &

1s
will compile myprog.c and display a list of files at the same
time.

Redirection: The input and output of commands can be redirected.
Example: The command sort puts the lines of a file in alphabetical
order.

o If you just type sort, the sort program will try to read from the
keyboard and write on the terminal, which is not too useful.

» Ifyoutype sort < aaa > bbb the sort program will read from
file aaa and write its output on file bbb.

e The i-0 of almost any command can be redirected in this way.

Shells: The user has a choice of several shells (command languages)
with slightly different syntax and features (Bourne Shell, C Shell,
Korn Shell). All the shells allow commands to be arranged into
Pascal-like programs (shell scripts).
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Key 21 MS-DOS and OS/2

OVERVIEW MS-DOS (Microsoft Disk Operating Sys-
tem), also known as IBM PC-DOS or simply DOS, is the
operating system of the IBM PC. PC-DOS version 1 strongly
resembled Digital Research CPIM, an earlier microcomput-
er operating system. Versions 2 and up support subdirecto-
ries and other UNIX-like features, but do not support
multitasking .

Files: Like CP/M, DOS limits file names to 11 characters of the form
XXXXXXXX.XXX. The extension (the 3 letters after the dot) iden-
tifies the type of file; .EXE and .COM files contain machine instruc-
tions, .BAT files contain DOS commands, etc.

Wild cards: Some commands accept wild cards that match any file
name with a specified pattern. Example: dir v* . exe displays a list
of all files whose names begin with V and end in .EXE.

Directories: DOS subdirectories work like those of UNIX except that
paths are written with backslashes (\ instead of /).

The 640K limit: DOS requires an Intel 8088 microprocessor or the
equivalent. DOS runs on the newer Intel 80286 (PC AT), 80386, and
80486, but only when they are in 8088 compatibility mode (real
mode). In real mode, these processors, like the 8088, are limited to 1
megabyte of memory of which the top 384K is reserved for video
memory and ROM. Hence DOS is limited to 640K of general-
purpose memory.

08S/2 and Windows: Unlike DOS, 0S/2 and Microsoft Windows (Key
23) can use the 80286, 80386, and 80486 in protected mode, in
which the memory capacity is much larger. Protected mode is so
called because it is designed for multitasking and the hardware *‘pro-
tects’’ the memory assigned to each program, preventing other pro-
grams from writing in it.

Recent developments: Originally, OS/2 and Windows could run DOS
software only by dropping back to real mode and losing the ability to
multitask. Later versions can use the 80386 and 80486 in multiple
virtual real mode to emulate not just one 8088, but several, with full
multitasking ability.
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Key 22 0S/360, MVS, and VM/CMS

OVERVIEW These are IBM mainframe operating sys-
tems.

"The OS/360 family: Several versatile operating systems are descendants
of 08/360, the operating system of the IBM 360, introduced in 1964.
Later IBM mainframes such as the 370, 390, 3081, 3090, and 4341 are
compatible with the 360 instruction set and use the same family of
operating systems, of which the newest is called MVS (Multiple
Virtual Storage).

Batch processing: OS/360 was originally designed for batch process-
ing. Instead of sitting at terminals, users encoded their programs on
punched cards and fed the stacks (decks) of cards into the machine.
Each program to be run was called a job.

Timesharing: There are ‘‘add-ons’” to O8/360-family operating sys-
tems that make it possible to use the computer from a terminal; these
include TSO (Time Sharing Option) and MUSIC (Multi-User Sys-
tem for Interactive Computing).

VM/CMS: Another IBM operating system, VM, is designed specifical-
ly for terminal users. VM is based on a simple but powerful idea: the
computer simulates multiple copies of itself.
¢ One computer can easily simulate another. The real computer runs

a program that recognizes all of the instruction codes of the sim-
ulated (virtual) computer and responds with appropriate actions.
This technique is sometimes used to run IBM PC programs on Sun
workstations, for instance.

* A computer can even simulate itself by running a program that
recognizes its own machine instructions. Most instructions can be
passed directly to the CPU, although for purposes of the simula-
tion, a few changes might need to be made, such as shifting mem-
ory addresses.

e A multitasking computer can simulate many computers just like
itself. Under VM, each user’s terminal is connected to a simula-
tion of a complete IBM 370 computer (a virtual machine), which
runs the single-user operating system CMS (Conversational Mon-
itoring System).
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Key 23 Graphical operating systems

OVERVIEW The Apple Macintosh operating system is
the best known, though not the first, of a new class of oper-
ating systems that use graphical user interfaces (GUIs).
That is, the operating system uses pictures to communicate
with the user.

How it works: On the Macintosh, programs and files are represented by
icons (small pictures). To run a program, the user points to it with a
mouse or other pointing device and presses (clicks) a button.

Windows: The screen is divided into windows that can overlap each
other; windows can be moved around with the mouse, and a window
that is hidden can be brought back into view with its contents
intact.

Menus: There are also plenty of menus (lists of choices) that can be
brought into view, and on which the user can make choices by using
just the mouse without typing on the keyboard.

User interface: To a remarkable extent, all Macintosh programs look
alike, so anyone who knows how to use one program can quickly
learn to use others.

» This similarity is due to the fact that the operating system, rather
than the application program, handles nearly all communication
with the user.

e Ordinary operating systems just transmit characters on the screen,
and if there are to be menus, the application program must create
them character by character.

* Graphical operating systems, however, know how to display
menus, prompt the user to choose a file, and even edit text; appli-
cation programs can do all these things through operating system
services.

Earlier graphical user interfaces: Xerox Star word processor, Xerox
1100 Lisp machine, and Lisp machines developed at MIT (Key
67).

Other graphical operating systems on the market today: OS/2 ver-
sion 1.1 and higher (Key 21), Microsoft Windows, and several
graphical user interfaces for UNIX, including SunView and Xwin-
dows. Most of these multitask by putting a separate process in each
window.
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Relation to object-oriented programming: Because the services pro-
vided by a graphical operating system are so elaborate, it can be hard
to write a program to use them effectively. Since the earliest Lisp
machines, programmers have used object-oriented techniques (Key
33) to simplify this task.

» Instead of just calling procedures, the application program ‘‘sends
messages’’ to objects such as windows and menus, which respond
with appropriate actions.

o Most of these ‘‘messages’” originate as events such as keystrokes,
mouse movements, and the like. ’

» In effect, there is no ‘‘main program’’ and the user, rather than the
program, calls procedures.
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Theme 4 DATA COMMUNICATION

Data communication is the exchange of information
among computers. It is becoming an increasingly im-
portant area of computer technology. The main kinds of data
communication are parallel and serial cables between parts
of a computer system, local area networking, and wide area
networking.

INDIVIDUAL KEYS IN THIS THEME
24 Parallel and serial communication
25 Local area networking

26 Wide area networking
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Key 24 Parallel and serial
communication

OVERVIEW A cable can carry data in either of two
forms, parallel or serial. Parallel communication is faster
and is usually used with printers; serial communication is
used to connect computers to terminals.

Parallel: The 8 bits of each character trave] simultaneously on 8 wires.
This is fast (often used with printers), but the cable must be fairly
short.

Serial: The 8 bits of a character travel one after another on a single wire.
This is slow but allows a long cable (no crosstalk between wires).

Terminals: Almost always use serial communication. A terminal con-
sists of a screen (cathode-ray tube, CRT) and a keyboard. A micro-
computer running terminal emulation software can be used as a
terminal.

RS-232 serial communication: Most serial communication systems fol-
low the EXA-232 (RS-232) standard, which specifies the signal volt-
ages but leaves it up to the user to choose the baud rate, the number
of bits per character (7 or 8), and the parity.

Baund rate: Is the maximum number of signals that can be sent per
second. Since RS-232 has only two kinds of signals, 0 and 1, the baud
rate for RS-232 signals is equal to the number of bits per second (bps).
Allowing for the start bit and stop bit between characters, the bps rate
is 10 times the number of characters transmitted per second (2400 baud
= 240 cps).

Parity: Refers to an extra bit that is sometimes added so that the total
number of 1’s in each character is always even (or always odd). This
makes it possible to detect characters garbled in transmission.

Meodems: Data can be transmitted over telephone lines using a moedem
(modulator-demodulator), which converts RS-232 serial signals into
sounds that the telephone can transmit. Hayes compatible modems
can dial their own phone calls.

ISDN: Modems will eventually be obsolete because telephone compa-
nies will provide digital lines directly to the customer. This is known
as Integrated Services Digital Network (ISDN).
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Key 25 Local area networking

Key 26 'Wide area networking

OVERVIEW A local area network (LAN ) links comput-
ers in the same building so that they can share files or print-
ers. One computer, the server, can provide disk space for
several others. The topology of a LAN is the shape in which
the machines are connected together—ring, star (with one
at the center), or bus (all in parallel).

Ethernet: LANSs require fast communications, so most LANS use some
form of Ethernet, a communication technology developed by Xerox
that uses radio-frequency signals inside a coaxial cable. (Radio waves
were once thought to be vibrations of a substance called “‘ether’’ or
““aether,”’ hence the name.)

* On an Ethernet, all the computers share the same cable and each
can receive signals from any other. Data is organized into packets
each of which has a header stating which computer it is addressed
to.

» If two computers transmit at the same time (a “collision’’), they
retry again after random lengths of time. This is called CSMA/CD
(carrier sense, multiple access, collision detection).

Token-ring: In a token-ring network, a special message, the token, is
passed around the ring, and only the computer that has the token is
allowed to transmit. One advantage of a token ring is that there is no
limit on the total cable length, as long as the individual computers are
close enough together, because each computer retransmits every mes-
sage to the next computer.

TCP/P: To share files and printers, the operating system must support
networking. UNIX systems normally adhere to a U.S. Department of
Defense standard called TCP/IP (Transmission Control Protocol/
Internet Protocol).

* ftp command: transfer files from one computer to another
* telnet command: use any computer as terminal on any other

NF.S: The Sun Microsystems Network File System (NFS) is an emerg-
ing standard that lets each networked UNIX machine read and write
files and even execute programs on the others.

38

OVERVIEW A wide-area network (WAN) connects
computers that are many miles apart. WANs are used mainly
to transmit electronic mail (email). Each computer on the
network is called a node and is frequently called on to pass
along messages to other machines.

Usenet: One of the oldest WANSs is Usenet (sometimes called UUCP),
established by an organization of UNIX users. Usenet uses fast cable
connections when they exist, but when they do not, it passes mes-
sages along by using modems to make phone calls automatically.
Isolated computer users can join Usenet with no special equipment
other than a modem.

BITNET and Internet: BITNET was originally established to link uni-
versities in the Northeast. Internet (formerly ARPANET) was orig-
inally set up by the Defense Advanced Research Projects Agency
(ARPA). These nets and Usenet are now linked; mail is sent in Inter-
net format. BITNET and Internet rely on high-speed cable links.

KEY EXAMPLE

An Intermet address

mcovingt@csunl.cs.uga.edu

Leducational institution
University of Georgia
name Computer Science Department

particular machine

To pass along a message to this address, a computer along the way need
not know where csunl or even c¢s is, as long as it can find
uga.edu.

Forwarding: In addresses, ‘%’ stands for ‘@’ when messages
are to be forwarded. Example: mcovingtZuga.bitnet@
cunyvm. cuny . edu means ‘‘Send this message to the computer
called cunyvm. cuny . edu, which will know how to send it on to
mcovingt@uga.bitnet.”
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Theme 5 PROGRAMMING

LANGUAGE DESIGN

C omputer programs are usually written in programming
languages rather than machine code. Each program-
ming language is designed to describe computations precise-
ly while being easy for humans to use. This Theme surveys
general issues in programming language design; Theme 6
covers particular languages.

INDIVIDUAL KEYS IN THIS THEME
27 Syntax and semantics

28 Data types and operations

29 Subprograms and modularity
30 Structured programming

31 Data structures

32 User-defined types

33 Object-oriented programming
34 Pointers and dynamic memory
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Key 27 Syntax and semantics

OVERVIEW  The syntax of a language determines what
Statements are possible, and how they are written, the
Semantics determines what these statements make the com-
puter do.

The art of language design: Beginning programmers often think that
programming languages must, for technical reasons, be exactly as
they are. This is not true. Programming languages are designed by
human beings, and programmers should be able to critique the design
of a language.

Syntactic design issues: These refer to the way statements are
written.

e Does each statement have to begin on a new line? (Yes in Fortran
and early BASIC; no in Pascal and C.)

* Are there reserved words which the user cannot redefine for other
purposes? If so, is the set of reserved words small and restricted, or
will it grow in future versions of the language? (If more reserved
words are added, user-defined names that are legal today may be
illegal tomorrow; this has happened in Microsoft BASIC.)

¢ Does the user have to declare variable names before using them?
(Yes in Pascal and C, no in BASIC. Because of this, a BASIC
compiler cannot detect a misspelled variable name; it just treats it
as another variable.)

Semantic design issues: These refer to what the statements make the
computer do. The designer must decide what elementary types of
data the language will handle—numbers, character strings, files,
etc.—and what elementary operations will be available.
¢ Turbo Pascal, for instance, has elementary operations on strings of

characters; ISO Standard Pascal does not.

» Fortran supports arithmetic on complex numbers (x + y\/—T);
Pascal and C do not. In Pascal and C, complex-number arithmetic
hasto be defined by the programmer in terms of simpler opera-
tions.

* The language must express the elementary operations in a readable
way. A selling point of Fortran in 1958 was that it allowed math-
ematicians to write A=B+ C instead of LOAD B, ADD C, STORE
A. This made arithmetic not only easier, but also less error-
prone.
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Key 28 Data types and operations

OVERVIEW  This Key surveys the types of data available

Character data: Most languages also do computations on character

strings. The most common operations are to concatenate strings
(e.g., "George" + "Washington" = "George Washing-
tion") and to compare them with respect to alphabetical order

("George" < "Georgia').

SNOBOL: The programming language SNOBOL is designed specifi-
cally for character string processing. It has built-in operations to
match patterns in strings.

in several programming languages and the operations that
can be performed on them.

KEY EXAMPLE

A Pascal program

Symbolic expressions: Lisp and Prolog support computations on sym-
bolic expressions. A symbolic expression is a formula written in the
pbrograma, same notation as the program itself. Example: (A B (C D)) is a list
var x,y,z: integer; in Lisp (with another list inside it), and family(father(mi-
begin chael),daughter(sharon)) is a structure in Prolog.

read(x,y); + These are not character strings; the computer recognizes their
2 =Xty internal structure and represents them in an efficient way using
write(z) pointers (Key 34).

end. » Symbolic expressions are a convenient way to represent very com-

Here x, y, and 2 are variables that hold values of type integer (positive
and negative whole numbers).

The statements read(x,y), z : = x+y, and write(z) tell the
computer to read two numbers into x and y, store the sum of x and y
into Z, and then write out the contents of z.

plex information. They are widely used in artificial intelligence
(Keys 65-73).

Integers: Inside the computer, x, y, and z are binary, not decimal (see
Key 53), and there are limits on their size. On a 16-bit CPU, for
example, integers range from —32,768 to 32,767. Some languages
also provide unsigned integers that range from 0 to 65,535 (the
largest number that will fit in 16 bits).

Floating-point numbers: Almost all programming languages also allow
computations on floating-peint numbers (numbers with a fractional
part). ‘‘Floating-point’’ means that the decimal point can come any-
where; 1.2345, 12.345, and 123.45 are all 5-digit floating-point num-
bers.

Mantissa and exponent: Floating-point numbers are stored as a man-
tissa and exponent. With decimal numbers, this is what we call sci-
entific notation: 0.00123 would be described as 1.23 X 10~3 (man-
tissa 1.23, exponent —3). On the computer, this is written 1.23E—3
(a notation called E format). Internally, however, the mantissa and
exponent are binary.
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Key 29 Subprograms and modularity

OVERVIEW  To prevent errors, it is important to divide a
program cleanly into sections. This is called modularity.
One way to make a program modular is to divide it into
subprograms, of which there are two kinds, procedures and
functions.

Procedures: Here is a Pascal procedure which, given a number 7, prints

n blank lines:

procedure skiplines(n:integer);
var i: integer;
begin
for i:=1tondowriteln
end;

» This procedure has one argument (parameter), an integer called
n, and one local variable, called i, which exists only within the
procedure.

e The majin program calls a procedure by executing a statement such

as skiplines{10) (in Pascal) or CALL SKIPLINES(10) .

(in Fortran).

e This gives the value 10 to the parameter n and starts executing
skiplines. When the procedure finishes, the main program
resumes.

e In effect, defining this procedure adds a new statement, skip-
lines, to the Pascal langnage.

Functions: Functions are like procedures except that a function returns
a value. Function calls are not statements; they are used in expres-
sions. Example: z : = 2+sqrt (y} finds the square root of y using
the function sqrt, then adds 2 and stores the result in z.

o Crucially, sqrt (y) has a value (the square root of y); skip-
lines(y) does not have a value, although it does perform an
action.

Lisp and C: Lisp and C biur the distinction between procedures and
functions. In these langnages, all procedures return values, but the
value can be discarded. In C, for instance, sqrt(z) is a perfectly
legal (but pointless) statement that computes the square root of z and
then does nothing with it. By contrast, the statement x = sqrt(z)
finds the value of sqrt (z) and stores it in the variable x.
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Key 30 Structured programming

OVERVIEW  Structured programming is a technique for
writing programs efficiently and avoiding errors. It gener-
ally includes neat, readable layout, modularity (Key 29),
carefully planned data structures (Keys 31-32), and avoid-
ance of GO TO statements.

KEY EXAMPLES

Both in BASIC:

Unstructured program Structured program

10 LET X=1 10 LET X=1

20 IF X>1000 GO TO 60 20 WHILE X<=1000
30 PRINT X 30 PRINT X

40 LET X=X+X 40 LET X=X+X

50 GO TO 20 50 WEND

“GO TO statement considered harmful’’(—Dijkstra): In older com-
puter languages, a program was a list of things for the computer to do,
and decisions were made by jumping from place to place in the list.
See the left-hand example above. In 1968, E. W. Dijkstra pointed out
that GO TO statements are error-prone because the programmer
doesn’t see the path of execution leading to a particular statement.

GO-TO-less programming: Dijkstra and colleagues advocated GO-
TO-less programming, replacing all GO TO statements with alter-
natives like block-structured IFs, repeat loops, and while loops.
A while loop keeps repeating something as long as a condition is

true. For example, see the right-hand example above.
 Arepeat loop is like a while loop, but the condition is tested at the
end instead of the beginning.
* A block-structured IF contains blocks (groups) of statements,
such as:

if x>y then
begin
y:=y+1l; x:
end

else

begin
x:=x+1;y :=y-1
end;

Il
ke

|
=
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Key 31 Data structures

OVERVIEW Data structures are ways of grouping infor-
mation together.

Arrays: Almost all programming languages have a data structure called
an array. The elements of an array are all the same type and are
identified by a number called the subscript.

KEY EXAMPLE

The Pascal declaration
var x: array[l..100] of integer;
creates 100 integer variables known as x[ 1], x[R2], ... x[100].

Subscript: Crucially, the subscript (the identifying number) can be
computed while the program is running and used as a way of deciding
which element to process.

KEY EXAMPLE
The loop

for i:=1to 100 do writeln(x[i]);
will print out all the elements of x, one by one. Nothing like this would
be possible if there were simply 100 variables with 100 different
names.

Records: Pascal and C also have records (in C called structs), in which
the elements (called fields) are of different types and are identified
by name.
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KEY EXAMPLE

Suppose a student in a class has a name, 2 homework grades, and | exam
grade. This information could be collected together in a record variable
such as:

var X: record

name: string;

hwkl,

hwk2,

exam: integer

end;
The fields are referred to as x.name, x.hwkl, x.hwk2, and
X .examn.

Arrays of records: There can also be arrays of records and records of
arrays. A whole class of students might be represented by an array of
40 records like the one above. If there were 10 homework grades per
student, instead of 2, it would be useful to treat them as an array
within the record. This would be declared as:

var x: array[l..40] of
record
name: string;
hwk: array[l..10] of integer;
exam: integer
end;
This is an array of records, and each record has another array as one
of its fields. In this structure, the 4th homework grade of the 18th
student would be stored in the element called x[ 18] .hwk[4].
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Key 32 User-defined types

-OVERVIEW  The Pascal language introduced the impor-
tant idea that each kind of record or array is a new data type
(alongside the built-in types real, integer, efc.) and
that the user ought to be able to give names to these user-
defined types.

Naming kinds of records and arrays: Let’s give names to each kind of
record or array in the previous example:

type homeworkgrades =
array [1..10] of integer;
type studentgrades =
record
name: string;
hwk: homeworkgrades;
exam: integer
end;
type classgrades =
array [1..40] of studentgrades;
var x: classgrades;

The elements of x are still referred to the same way as before, but the
organization is clearer, and the types homeworkgrades, stu-
dentgrades, and classgrades can be used as needed else-
where in the program.

Enumerated types: Pascal also allows enumerated types, in which the
values themselves are invented by the user. Example:
type kindofstudent = (undergrad, graduate, post-
doc);
e This creates a type whose possible values are undergrad,
graduate, and postdoc, with a unique arbitrary bit pattern for

each.

¢ Statements such as X : = undergrad or if y = postdoc
then . . . are possible, provided x and y are of type kindof-
student.

Subranges: Pascal also provides subranges, user-defined types that
span limited ranges of some other type (usually integers). Example:
var k: 1..100 lets k only have values in the range 1 to 100; trying
to assign it any other value causes a runtime error.
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Key 33 Object-oriented programming

OVERVIEW  An object type or class is a user-defined
type that has procedures associated with it. Objects (values)
belonging to the type are called instances of it. In object-
oriented programming (OOP), the whole program is orga-
nized in terms of object types.

Object types: Programmers have always written procedures to process
their user-defined types. What’s new about object-oriented program-
ming is that the procedures and functions are explicitly associated
with the types, through declarations such as this (in Turbo Pascal
5.5):

type studentgrades =
object
name: string;
hwk: homeworkgrades;
exam: integer;
procedure average { defined elsewhere }
end;

¢ If x is a variable of type studentgrades, then the average
procedure associated with it is called by the statement X . aver—
age (notaverage(x) as you might expect, even though x does
get passed to the procedure).

* Early object-oriented programming systems referred to this as
“‘sending the message average to object X'’ and even used state-
ments such as (send x :average). But “message-sending’’ is
not the main idea of object-oriented programming; it’s just a
metaphor for describing it.

Polymorphism: The programmer can define procedures with the same
names for different types (polymorphism). The computer keeps
track of which procedures belong to which types. As a result, similar
operations on different types can be given the same name.

Subtypes: One object type can be defined as a subtype of another, so
that it inherits the structure and procedures of the type on which it is
based, except for any that are explicitly overridden.
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Key 34 Pointers and dynamic memory

OVERVIEW Pascal and C support pointers. A pointer is
a variable containing the memory address of another vari-
able.

Main uses for pointers:
¢ To decide at run time which variable to use. In this sense point-
ers are like array subscripts, but more general, because they can
point to anything. By using pointers, a record can contain the
address of another record, or even itself (Key 45).
¢ To refer to dynamically created variables.

Dynamically created variables: The statements new (in Pascal) and
malloc (in C) create new variables while a program is yunning.
Such variables have no names because they did not exist when the
program was written; they have to be referred to via pointers.

Uses: Dynamically allocated variables are used whenever a program
does not know in advance how much memory it will need.
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KEY EXAMPLE

A Pascal program that does several things with pointers:

program pointerexample;

var
1,j: integer;
p,a: "integer; { pointers to integer }
begin

i:=123;

p :=addr(1i); { pcontains address of i }

q:=p; { nowgalsocontainsaddressofi}

writeln(q"); { write out what q points to,
namely 123}

q =qg+1; { equivalent to i:=i+1}

writeln(p®); { palsopointstoi, so it writes
124}

new(q); { create new integer and make g
point to it}

q:=p+1; { storel24+linthenewvariable}

new(p); { create new integer and make p
point to it}

p”:=0; { store 0 in this new variable}

writeln(p”,q"); { writes 0 and 125}

new(p); { create yet another variable }

{ The variable that p previously pointed to is
irretrievably lost, because nothing now points
to it and it has no name. }

end.
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Theme 6 SPECIFIC PROGRAMMING
LANGUAGES

ming languages. Pascal, Modula-2, and Ada are closely
related languages designed for structured programming; C is
designed for efficient and concise code; C++ 1s an object-
oriented extension of C; and BASIC, Fortran, and COBOL
date from before the structured programming era.

]‘his Theme briefly surveys several widely used program-

INDIVIDUAL KEYS IN THIS THEME

35 Pascal

36 Modula-2 and Ada
37 Cand C++

38 BASIC

39 Fortran

40 COBOL
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Key 35 Pascal

OVERVIEW  The programming language Pascal was de-
veloped in order to promote structured programming and to
show that a simple language could be powerful enough for
serious work. Pascal is very widely used on microcomputers
and is a good language for describing algorithms.

Origin: Pascal was developed by Niklaus Wirth around 1971. It is
named for Blaise Pascal, who built a mechanical computer around
1642. Wirth developed Pascal as a simpler alternative to Algol, which
had been designed by an intermational committee.

Versions:

¢ ISO standard Pascal (derived from Wirth’s work): no variable-
length character strings, no way to compile procedures separately
from the main program, hence no way to build a procedure
library. )

e UCSD Pascal (U. of California, 1970s) allowed programmers to
define unmits (groups of procedures) and compile them separately.

e Turbo Pascal (implemented by Anders Hejlsberg in Denmark,
marketed by Borland International) has units, variable-length
strings, and many other valuable extensions. Available on IBM PC
and Macintosh only.

KEY EXAMPLE

A Pascal program

program pascaldemo{output);
var i: integer;

begin

X = 1;

while x<1000 do
begin
writeln(x); x :=x +x
end

end.

The keywords begin and end enclose blocks of statements. A begin-
end block can go anywhere a single statement can go.
Many features of Pascal are discussed in Keys 27-34.
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Key 36 Modula-2 and Ada

OVERVIEW  Modula and its successor Modula-2 were
developed by Niklaus Wirth in the early 1980s as a succes-
sor to Pascal, which Wirth had designed a decade earlier.
Ada is a full-featured Pascal-like language developed for
the U.S. Department of Defense.

Modula-2: Modula-2 is similar to Pascal but sofves the problem of how
to compile subprograms separately from the main program. Programs
are divided into modules each of which can export names to, and
import names from, other modules. Modules can be compiled sepa-
rately.

KEY EXAMPLE
A Modula-2 program

MODULE Modula2demo;
FROM InOut IMPORT WriteInt, WriteLn;
VAR x: INTEGER;
BEGIN
X :=1;
WHILE x<1000 DO
x :=x+x; WriteInt(i,5); WritelLn
END
END Modula2demo.

Differences from Pascal: One big difference is that a subprogram can
determine the size of an array at run time; this is the key to imple-
menting variable-length strings.

* InModula-2, Read, Write, WritelInt, etc., are ordinary pro-
cedures with fixed numbers and types of arguments; this impairs
conciseness but allows users to write their own substitutes for
them.

* Modula-2 includes a mechanism to handle concurrent pro-
cesses.
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Ada: A full-featured, powerful Pascal-like language developed for the
U.S. Department of Defense, Ada is named for Augusta Ada Byron
(1815-1852), the world’s first programmer, who worked with a
mechanical computer built by Charles Babbage.

Purpose: Ada is specifically designed for embedded systems (comput-
ers that control equipment) as well as general-purpose computing.

Use: The name Ada is a registered trademark and can only legally be
used for compilers that have passed a validation suite of official test
programs. This, combined with the language’s complexity, has made
the use of Ada expensive and somewhat uncommon.

Form: In Ada, semicolons come after statements (as in C) rather than
between them as in Pascal and Modula-2. Every Ada statement ends
with a semicolon regardiess of what follows it.

KEY EXAMPLE
An Ada program

WITH Basic_I0;

USE Basic_I0;

PROCEDURE Ada Demo IS
x: Integer :=1;

BEGIN
WHILE x < 1000 LOOP
x := X + x; Put(x); NewLine;
END LOOP;

END AdaDemo;
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Key 37 Cand C++

OVERVIEW C was designed at Bell Laboratories and a
C compiler is included in every copy of the operating system
UNIX (Key 20). C is designed so that the compiler can
translate it into very efficient machine code. C++ is an
object-oriented extension of C.

Origin of C: The programming language C was designed by Dennis
Ritchie at Bell Laboratories around 1972 and was used to write much
of the operating system UNIX (Key 20). C replaced an earlier lan-
guage called B. More recently, C has become very popular for pro-
gramming all types of small computers.

KEY EXAMPLE
A C program

#include <stdio.h>
main( )

intx =1;

while (x<1000)

{x+=x; printf("%dn",x); }
return(0);

}

Here #include <stdio.h> tells the compiler to read the header
file STDIO.H, which tells it how to call the standard i-o library.

Semicolons come after statements (as in Ada), not between them as in
Pascal. In C, every statement ends with a semicolon regardless of
what comes after it.

The statement X += X means the same thing as x = x + x. Even
more concisely, x++ would mean x = x + 1.
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Advantages of C:

* C programs tend to be efficient because operations that are easy
for the CPU are easy to express in C, and those that are hard for
the CPU are hard in C. Example: Comparison of numbers uses the
operator > because the CPU can compare numbers directly, but
comparison of strings requires a procedure call in C because that is
how the CPU does it.

* Many operating system services (Key 18) are available — even
the ability to load and run another program. Traditionally, when C
is implemented on non-UNIX systems, the operating system calls
are made as much like UNIX as possible. Thus the power of
UNIX carries over, in C, to other operating systems.

C++: Developed in the mid-1980s by Bjarne Stroustrup (also of Bell
Labs), C++ extends C by adding object-oriented programming
(Key 33). The goal of C+ + is to make all data types equally easy for
the programmer to handle, regardless of whether the tasks are equally
easy for the CPU. In this respect C+ + is quite different from C.

* InC++, user-defined types (classes) can inherit the attributes of
other object classes.

* C++ even allows the programmer to define what operators such
as +, —, *, etc., do to objects other than numbers. Thus + could
denote concatenation of strings or vector addition of vectors.
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Key 38 BASIC

OVERVIEW BASIC (Beginner’s All-Purpose Symbolic
Instruction Code) was the first language designed for inter-
active computing. It was originally elegant and simple in
design, but later microcomputer versions have become very
complicated.

Origin: The programming language BASIC (Beginner’s All-Purpose
Symbolic Instruction Code) was invented in 1964 by John Kemeny
and Thomas Kurtz.

Goals: It was designed for interactive computing (computing at a ter-
minal, rather than batch processing; see Key 22). One design goal for
BASIC was that a person knowing even a small part of the language
should be able to get useful results.

Programs: Programs are short and variable names need not be declared
in advance. Each statement begins with a line number, important
because terminals in 1964 were teletype machines, with no way to
move the cursor to make corrections. The programmer could only
correct a line by retyping it. The computer used the line numbers to
keep the lines in order.

Subsequent development: BASIC is the most complicated program-
ming language in wide use today.

* At first BASIC was used mainly to do mathematical calculations.
It included MAT (matrix) statements to do matrix arithmetic.

* BASIC lost its elegant simplicity in the 1970s when it became
popular on microcomputers. The MAT statements were dropped
but hundreds of new kinds of statements were added in an un-
planned way. Microsoft BASIC on the IBM PC has about 300
reserved words (Key 27), and it’s a safe bet nobody remembers
the entire list.

KEY EXAMPLE
A BASIC program

10 INPUT X

20 LET Y = SQR(X)

30 PRINT " THE SQUARE ROOT OF" ,X, "IS",Y
40 END

58

Key 39 Fortran

OVERVIEW Foriran (Formula translation), introduced
by IBM in 1958, was the first programming language Fhat
allowed programmers to express mathematical expressions
as formulas, for example writing A=B+C instead of LOAD
B, ADD C, STORE A. Fortran introduced important con-
cepts such as arrays (Key 31) and subroutines (Key 29).

The Fortran language: Fortran has always been well standardized,
making this a good language in which to write portable programs
(programs easily converted from one computer to another).

Variations: Fortran I was used briefly in the early 1960s, then
replaced by Fortran IV and, later, Fortran 77 (1977). Of these,
Fortran IV remains the most widely recognized standard. _

Layout: Fortran was designed for punched cards. Any line beginning
with C is a comment. Statement labels appear in columns 2-5 and
statements begin in column 7.

FORMAT statements: The statement PRINT 100, I in the sample
program refers to a format statement labeled 100. This format state-
ment could be placed anywhere in the program. It specifies how to
print a number: one blank (1X) followed by a 6-digit integer (16).

Carriage control: The first character of each line of output is not print-
ed, but instead is used for carriage control (printer control): blank to
begin a new line, ‘0’ to skip an extra line, ‘1’ to begin a new page, or
‘-’ to overprint on the same line.

KEY EXAMPLE
A Fortran IV program

¢ SAMPLE OF FORTRAN IV - M. COVINGTON 1990

INTEGER I
I=1

1 PRINT 100, I

100 FORMAT (1X,I6)
I=TI+I
IF (I.LE.1000) GO TO 1
STOP
END
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Key 40 COBOL

OVERVIEW COBOL (Common Business-Oriented Lan-
guage) is unique because it looks like English. COBOL was
developed in the early 1960s and is still used in business
data processing. Programs are very easy to read, but com-
plex algorithms are hard to express.

Important features of COBOL:

* COBOL introduced the record data structure (Key 31) and
gave programmers detailed control over the storage of data in
memory.

* In COBOL, numbers are often stored as character strings of dec-
imal digits rather than as binary numbers.

* Decimal arithmetic avoids the rounding errors that result from
conversion to binary (see Key 53).
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KEY EXAMPLE

A COBOL program
IDENTIFICATION DIVISION.

PROGRAM-ID. COBOL-DEMO.
AUTHOR . M. A. COVINGTON.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-PC.
OBJECT-COMPUTER. IBM-PC.

DATA DIVISION.

WORKING-STORAGE SECTION.
77 SUM PICTURE IS S999999, USAGE IS COMPUTATIONAL.
77 X PICTURE IS S999999, USAGE IS COMPUTATIONAL.

PROCEDURE DIVISION.

START-UP.
MOVE 0 TO SUM.
GET-A-NUMBER.
DISPLAY "TYPE A NUMBER: " UPON CONSOLE.
ACCEPT X FROM CONSOLE.
IF X IS EQUAL TO O GO TO FINISH.
ADD X TO SUM. )
GO TO GET-A-NUMBER.
FINISH.
DISPLAY SUM UPON CONSOLE.
STOP RUN.
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Theme 7 ALGORITHMS Key 41 Searching

OVERVIEW A common problem is to find a particular
element (called the target) in an array. Finding a particular
name in a phone book is an instance of this problem. There
are three main techniques: sequential search, binary
search, and hashing.

An algorithm is an exact procedure for doing a computa-

tion. This Theme surveys some important algorithms

and some ways of organizing data for efficient process-

ing.

Ing Sequential search: The simplest approach: look at each element, start-
ing with the first, then the second, and so on, until the desired element

INDIVIDUAL KEYS IN THIS THEME is found. This takes time proportional to the number of elements in
the array.

41 Searching
; Binary search (interval-halving search): Possible only if the elements
42 Sorting are stored in alphabetical or numeric order.
43  Quicksort « Start by comparing the target to the element in the exact middle of
: the array. This will tell you whether it should be in the first half or

44 Rf:cursmn the second half. Then take whichever half of the array the target

45 Lists and trees falls into, and compare the target to the middle element of that.

46 File structures ¢ Keep doing this with smaller and smaller sections of the array until

: you find the target or end up with a section with O elements, which

47 _Relational databases will prove thatgthc target is not in the array.

48 Data compression + Binary search takes time proportional to log, n, where n is the .
number of elements in the array. For example, any element in a
million-element array can be found in fewer than 21 steps.

* An alternative to an array is a binary tree (Key 45), which is a
data structure with the binary search built into it.

Hashing: A hash function is an arbitrary function which, given any
value, picks out an array location where that value should be stored.
This can be any function at all, as long as it always gives the same
location for the same value.
¢ When the array is built, each element is stored where the hash
function says it should be stored, or in the next available location if
that location is already taken.

¢ To find an element, simply apply the hash function to it, and
search forward from the location that the hash function
specifies.
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Key 42 Sorting

OVERVIEW  Another common problem is to sort the ele-

ments of an array (arrange them into numeric or alphabet-
ical order).

Desired characteristics: A good sorting algorithm should do the sorting
in place (without making another copy of the array) and should be
stable (so that if two elements are alike, their relative order is not
disturbed). Stability is important when the same array is sorted more
than once on different fields, e.g., by first and then by last name.

KEY EXAMPLE

A selection sort

Suppose you are sorting an array A with elements numbered from 1 to n.
To start, find the smallest element in A[1]...A[n] and swap it with
A[1]. Then find the smallest element in A[2] .. .A[n] and swap it
with A[2], and.so on until you reach the end of the list. In Pascal:

fori:=1ton—-1do
begin
smallest :=1;
for j:=i+l tondo
if A[j] < A[smallest] then smallest:=j;
swap(A[smallest],A[i])
end;

The complete sort takes about n swaps and about n?/2 comparisons.

Insertion sort: Also takes time proportional to n° except that it is much
faster if only a few elements are out of place (e.g., adding elements to
a sorted array). Suppose you're alphabetizing the letters in the string
ACDBEFE.
 Start at the beginning and search for a letter that is out of sequence.

The first such letter is B.

« Shift it leftward past all the letters that should come after it—that
is, make it jump over C and D. Now you have ABCDFE.

« Starting where you put B down, again search for the first letter that
is out of sequence. This time you’ll get E. Now shift E leftward
past F, giving ABCDEEF. No more letters are out of sequence, 50
now you’re done.
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Key 43 Quicksort

OVERVIEW The Quicksort algorithm, invented by C. A.
R. Hoare, takes time proportional to n log, n (much less
than n®) to sort a random array. It is a recursive algo-
rithm—that is, it solves a problem by dividing it into smaller
problems of the same kind.

How Quicksort works: The key idea is to partition the array so

that:

» one element (the pivot) gets into its final position;

¢ all elements that should precede the pivot get put before it;

« all elements that should follow the pivot get put after it.
Then sort the two sub-arrays (portions of the original array) before
and after the pivot, and you’re done. Example: To put the letters
QWERTYZXCVBNM into alphabetical order, you might choose Q as
the pivot, then partition the array into ECBNM + Q + RTYZXV, then
sort ECBNM and RTYZXV.

Recursion (Key 44): In order to do a Quicksort on an array, you have to
do two smaller Quicksorts on the sub-arrays. That’s recursion. The
process does not continue endlessly because you’ll eventually get
sub-arrays with only O or 1 elements, and you don’t have to sort
them.

Partitioning in place (without making copies of the array): First, choose
the pivot arbitrarily. (In the example, we use the first element as the
pivot. This is not such a good idea if the array is already nearly sorted;
it would be better to pick a random element.) Then search the remain-
der of the array from both ends:

» Starting at the beginning, Jook for the first element that should
follow the pivot.

* Meanwhile, starting at the end, look for the first element that
should precede the pivot.

*  When you find two such elements, swap them, then continue the
search.

» Keep going until the two searches bump into each other. Divide
the array in two at that place.

 Finally, swap the pivot with the first element of the second sub-
array.

Disadvantages: Unlike insertion sort and selection sort, Quicksort is not
stable (Key 42). Nor is it efficient for arrays that are already almost
sorted (it has no way of realizing that, in such a case, very few
elements need to be moved).
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KEY EXAMPLE

Quicksort in Pascal

{ Quicksort for array a[l..n]}
procedure swap(var x,y: char);

var
t: .. .same type as elements of a. . . ;
begin
t:=x; x:=y; y:=t
end;

procedure partition(first, last:integer;
var p:integer);

{Partitions a[first]...aflast] into two }
{ sub-arrays using a[flrst] as pivot. }
{pis position where pivot ends up. )
var

i, j: integer;

pivot: ...same type as elements ofa...:
begin

pivot :=a[first];

i:=first;

j:=1last+1;

repeat

repeat i:=i+1luntil (a[i]>=pivot) or (i=1last);
repeatj:=j~-1until (a[J ]<=pivot)or(j=first);
alj

if i<j then swap(a[i],
until j<=1i;
swap(a[j],a[f‘irst]);
p:i=]
end;

Iy

procedure quicksort(first, last:integer);

{ Sorts the sub-array froma[first] to a[last]}
var p: integer;
begin

if first >= last then exit;
partition(first,last,p);
quicksort(first,p-1);

quicksort(p+1, last)
end;

Key 44 Recursion
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OVERVIEW  Recursion is what happens when a proce
dure calls itself. Recursion is a way to solve problems by
decomposing them into smaller problems of the same
kind.

Where recursion is used: Some problems for which recursion is useful

include:

o Quicksort (Key 43);

» searching binary trees (Key 45);

¢ translating arithmetic expressions into machine code (because
an expression such as (2+3) + (4+5) contains smaller expres-
sions, 2+3 and 4+5, within it).

» There are also many others. The programming languages Lisp and
Prolog use recursion to describe all kinds of repetitive processes.

How to understand recursion: If you think of a program as a list of
things for the machine to do, you will have a hard time understanding
recursion. After all, it makes no sense to re-start a list when you are
already in the middle of it. But if you think in terms of defining
procedures, recursion is easy to understand.

« It makes perfect sense, in the middle of a procedure, to perform the
same procedure on a smaller problem.

* For exaruple, in the process of cleaning your house, you clean the
kitchen, which is part of the house.

How recursion is implemented: Pascal and C support recursion; that is,
they allow procedures and functions to call themselves. (BASIC and
Fortran usually do not.)

*  When a procedure calls itself, the computer creates a whole new
copy of the procedure, or more precisely a new set of parame-
ters and local variables; this keeps the called procedure from
interfering with the caller, even if they are the same procedure.

Recursive program logic: Any repetitive procedure can be expressed
recursively.
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KEY EXAMPLE

Here is a recursive procedure that just prints the numbers | to 10:

procedure printnumbers(n:integer);
begin

writeln{n);

if n<10 then printnumbers{n+1)
end;

This is started by calling printnumbers(1).
Of course recursion is no particular help in this algorithm; it would be

more efficient to use a for loop. Recursion is normally used only when

it makes the algorithm easier to express.

Alternatives: Conversely, any recursive algorithm can be expressed
without recursion, although it is sometimes very cumbersome to
do so.

Termination: Every recursive procedure must have a situation in which
it does not call itself, and must work toward that situation; otherwise
the recursion is endless.
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Key 45 Lists and trees

OVERVIEW A linked list is a set of data items each of
which includes the location of the next item in the list. A tree
is similar, but each element can include the locations of two
or more additional elements.

Linked lists: Linked lists are useful because elements can be added,
removed, or re-ordered by changing just the pointers, without actu-
ally moving the elements (Figure 6 A, B). By contrast, addding or
removing an element of an array requires shifting all the adjacent
elements to make room or fill the gap.

Building lists: Lists are usually built from dynamically allocated mem-
ory with pointers (Key 34). The declaration for a list in Pascal looks
like this:

type listpointer = "listelement;

type listelement = record
data: ...any data type...
next: listpointer
end;

List elements: To create a list element, call new(x )}, where x is a
listpointer; store an appropriate value in X" . data; and make
X" .next point to the next element.

Trees: A tree (Figure 6 C) is like a list, but each element has two
pointers instead of one. The tree in the example is a binary tree
designed for rapid searching.

* To insert a name into it, start at the root.

* If the new name alphabetically precedes the name found there,
follow the left pointer; otherwise follow the right pointer.

» Keep doing this until you find a null pointer; then create a new
element, store the new name in it, and hang it there.

Retrieval: Names can be retrieved by the same procedure, and on the
average, finding a name in an n-element tree takes only slightly more
than log,n steps — much faster than searching the whole tree. (Com-
pare binary search, Key 41). Naturally, instead of just names, the
tree can store large records or any kind of data.
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Balancing: There are techniques for balancing a tree to make sure it has
an approximately equal number of left and right branches. An unbal-
anced tree might have a long string of right pointers with nothing on
the left, or vice versa, and this would slow down the process of
searching it.

Recursion and binary trees: A binary tree is a recursive data struc-
ture because each tree consists of one element, plus two more trees
(the left and right subtrees). Some of the subtrees are empty
(null).

KEY EXAMPLE

A recursive algorithm to print out all the names in the tree, in alphabet-
ical order

(1) Print out the left subtree (unless it is empty).
(2) Print out the element at the root.
(3) Print out the right subtree (unless it is empty).

The key idea is that this recursive algorithm processes each subtree the
same way it processes the main tree. That is, it calls itself recursively to
process each subtree.
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Key 46 File structures

OVERVIEW Data structures such as lists and trees can
exist on disk as well as in memory. To see how, we must
review basic file structures. The main kinds of file are
sequential (text and binary), random-access (direct-
access), and indexed.

Sequential files: Most files are sequentinl, which means that they are
read and written one element at a time, in sequence. When the file is
first opened (accessed from a program), the computer is ready to read
at the beginning. After reading ench element, the computer is ready to
read the next one, Sequentinl files can exist on either disk or tape.

Types of sequentinl files:

¢ A text file is a stream of charncters divided into lines, ready to be
sent to the screen or printer, The end of each line is marked by
ASCII 10 (UNIX) or ASCII 13 + 10 (MS-DOS). On IBM main-
frames, there is no end-of-line mark; Instead, the length of each
line is stored as a number with the line,

* A binary file contains, one after another, the computer’s internal
binary representations of data. Example; To store the number 1.23
on a binary file, the computer need not convert it into the charac-
ters "1.23"; it can simply write the binary internal representa-
tion of 1.23 onto the file.

““File of type’’: In Pascal, a binary file of floating-point numbers is
declared as file of real. There could equally wellbea fileof
any other type, even arrays or records. The important thing is that all
the data items on the binary file are the same type; if they were not,
the computer would not know how many bits each item occupies.

Random-access files: The alternative to a sequential file is a random-
access file (direct-access file), in which the computer can read or
write any element at any time (for example, ‘‘read the 10th element,
then write this data into the 14th element...’”).

Records: Such a file can reside only on disk. It must consist of records
of equal length; each record can consist of many fields. In many ways
a random-access file is like an array that resides on disk.

Use: The records in a random-access file can of course contain the loca-
tions of other records. In this way, trees and other linked structures
can reside in disk files.
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Indexed files: An indexed file has its records in an arbitrary order but i.«a.
accompanied by another file called the index in which locations of

records can be looked up.
Advantages: The index can be sorted without moving the records in the

file itself. Also, the same file can have multiple indexes on different
keys (e.g., a mailing list could be indexed by name and also by ZIP

code).
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Key 47 Relational databases

OVERVIEW A relational database is a systematic way of
storing information in tables of rows aund columns, such that
one table can refer to another and some basic operations
(described below) are possible,

Databases: A database is a collection of data residing on one or more
files. When we talk about databases, we are talking about the struc-
ture of the data and the ways it can be retrieved, rather than the
software that implements it, Many commercial database software
packages exist, such as DB2 for IBM mainframes, and dBase XXX and
Paradox for PC's,

Relational databnses: A relutional database consists of (or is viewed
as) tables cach of which has rows and columns. Example:

Name City Salary
J. Jonasa Atlanta 25,000
S. Smith Dallas 45,000
E. Elson Baltimore 32,000
B. Brown Toronto 48,000

Tables: The table defines a relation between the items init: J. Jones
goes with Atlanta and 25, 000, S. Smith goes with Dallas
and 45, 000, etc.

Tuples: More formally, the table is a set of tuples such as <J. Jones,
Atlanta, 25,000>. A tuple is a set of values each with its particular
meaning, in this case name, city, and salary.

Operations on relational databases:

* Given a table, you can select particular rows (such as the employ-
ees with salaries over 30,000) while discarding the rest.

» Or you can project particular columns (keep those columns while
discarding the rest).

¢ If you have two tables whose columns have the same meanings,
you can combine the tables to form their union. Example: The
names and addresses of eastern employees could be combined with
the names and addresses of western employees.

» To join two tables is to form a table containing information from
some columns in one table and some columns in the other. Exam-
ple: Suppose you have a table of names and addresses, plus a table
of names and phone numbers. You can join these to make a table
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of names, addresses, and phone numbers. In this example the per-
son’s name is the key that identifies which row in one table goes
with which row in the other.

Structured Query Language (SQL): The purpose of the database is to
answer queries. Many relational databases use Structured Query
Language (SQL); using the same language makes it easier for dif-
ferent computers to exchange data. In SQL, almost every data retriev-
al operation is called SELECT (including projecting and joining as
defined above).

KEY EXAMPLE
An SQL query

SELECT NAME, SALARY FRCM TABLEl
WHERE SALARY > 35000

Assuming TABLE1 is the table above, this query retrieves the following
data:

Name Salary

S. Smith 45,000
B. Brown 48,000
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Key 48 Data compression

OVERVIEW Data compression comprises techniques
for making files, messages, or other collections of data
shorter. Data compression is a matter of trading time for
space because it takes time to decode compressed data.

Run-length encoding: The simplest kind of data compression is run-
length encoding. Long strings (rums) of repeated characters (or bits)
are replaced by codes that say, ‘“The following character is repeated
N times.”” Example: In place of 200 asterisks, you could write
"\200* ", and in place of 53 plus signs, "\053+".

Escape characters: This encoding scheme would use \ as an escape
character to indicate that a run-length code is coming, followed by a
three-digit number and the repeated character itself.

» Normally you wouldn’t encode a run unless it was at least 6 char-
acters long. But when the character \ occurred in the input, you
could encode it as "\OOI\" (i.e., a run of just one\) to keep it
from being mistaken for an escape character.

* Of course, in place of a 3-digit number, you could use a single
character and let its ASCII code (Key 5) be its numeric value; this
would make the code even morse efficient.

Huffman coding: A more powerful way to compress data is to use
shorter codes for the more common sequences of characters or bits,
and use longer codes for the less common ones.

KEY EXAMPLE

In this book, the word computer is very common, and the word ox is very
rare. If you replaced every occurrence of computer with ox and every
occurence of ox with computer, the book would be shorter. You could
replace any number of common long words with uncommon short ones
in the same way. Of course you’d have to maintain a table of what words
had been replaced with what. If you did this with bit sequences rather
than words, you’d have a type of Huffman code.

Bit sequences: Huffman codes represent characters or other units with
bit sequences of different lengths—2 or 3 bits for the most common
characters, and as many bits as necessary to distinguish the others.
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Choice of sequences: The bit sequences are chosen so that none of them
matches the beginning of any other. Thus if 011 is one of the codes,
0111 cannot be used, but 1011 can. This makes it possible for the
computer to tell where one code ends and the next one begins.

Limitations: There is an absolute limit to how short a message can be
made. To distinguish 2" different messages, you need at least n
bits.

» A file of random bits is hard or impossible to compress.

e ASCII text files can usually be compressed to 60% of their original
size with Huffman codes.

* Graphic images (bitmaps, Key 62) can often be shrunk tremen-
dously by run-length encoding.
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Theme 8 COMPLEXITY AND

COMPUTABILITY

One of the most important concerns of computer science
is the power of computers. Complexity theory studies
the number of steps required for a computation, and in par-
ticular the way this number grows with the size of the input.
Computability theory studies limits on the power of all
conceivable computers.

INDIVIDUAL KEYS IN THIS THEME

49 Orders of complexity

50 NP-completeness

51 Turing machines and the halting
problem

52 Formal languages and automata
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Key 49 Orders of complexity

OVERVIEW [n Keys 41-43 we observed informally that
some algorithms take ‘‘time proportional to n®’’ or ‘‘time
proportional to n logon’’. Complexity theory is the branch
of computer science that studies the time and space require-
ments of algorithms in detail.

“Big-O”’ notation: Suppose the number of steps required by a partic-
ular algorithm is f(n) = n® + 5n? + 6n + 230 where n is the size of
the input.

o If »n is sufficiently large, n
230.

+ The term n° dominates the others, and for sufficiently large n, the
other terms do not matter.

 More precisely, f(n) is asymptotically bounded by kn®. That is,
for some constant k, and for all n greater than some minimum
value, kn® will always be greater than f(n).

. Lejt O(n?) denote the set of functions asymptotically bounded by
kn’.

* Then f(n) € O(n®)— or, as it is more commonly but less precisely
written, f(n) = O(n®). We say that f(n) has order of n° complex-
ity.

Some examples:

e Algorithms of order O(n) take linear time.

o Orders O(n?), O(r’), O(n?), etc., take polynomial time.

* Linear- and polynomial-time algorithms are generally considered
tractable (practical to compute; see Key 50).

¢ An algorithm that always takes the same amount of time regardless
of n (constant time) is O(1).

* You can identify the complexity of a polynomial-time algorithm
by looking at the way it uses loops. A single loop with O(n) steps
take O(n) time. One such loop within another takes O(n?) time,
and so on. Be sure to look for ‘‘hidden loops’ such as string
searches or calls to subroutines that take non-constant time.

¢ An algorithm that divides the problem in half, then applies recur-
sively to each half, will take O(n log, n) time.

¢ Intractable algorithms take exponential time, Ofk”). For suffi-
C'}(ently large n and any constant k, £” increases much faster than
n.

+ Note also that 1 +2+3+...+nis O(n?®), and 1X2X3X ... Xn = n/
is O(k*) or, equivalently, O(e”).

3 is much larger than 5n? or 6n or
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Key:SO NP—completcnerérsi,

OVERVIEW Some problems, such as the traveling sales-
man problem, appear to take exponential time. Problems in
this class are described as NP-complete, and if a polynomial-
time solution is found for any of them, it will apply to all of
them.

The traveling salesman problem: Suppose you want to know the short-
est path that will take you to each of # cities in any order. This is the
traveling salesman problem. As far as is known, the only way to
solve this problem is to actually enumerate all the routes and compare
their lengths.

Shortcuts: There are some shortcuts — for example, you can immedi-
ately abandon any route, without pursuing it to the end, as soon as
you see that it is longer than the best route found so far. But these
shortcuts do not change the order of complexity of the problem (Key
49).

Intractability: The traveling salesman problem is intractable because,
for any 7 cities, the number of routes to be compared is n-factorial
(n! = 1X2X3X...Xn). This means the problem requires exponential
time, O(¢*). Example:

Number of cities, n Number of routes, n!

5 120

10 3,628,800
15 1.3 x 102
20 2.4 X 10'8

(If 20-factorial doesn’t Jook like a big number to you, imagine a com-
puter that could do all the calculations for a route in just one microsec-
ond, far faster than any computer that exists today. Evaluating routes for
20 cities would then take 1.8 million years.)
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The sets P and NP: The traveling salesman problem apparently does not
belong to the set P (problems soluble in pelynomial time). Howev-
er, it does belong to the set NP (‘‘nondeterministic-polynomial®’),
which comprises problems for which a solution can be tested, thongh
not discovered, in polynomial time.

* No one has actually proved that P #+ NP.

* However, the traveling salesman problem is known to be NP-
complete, i.e., equivalent to the hardest problems in NP. This
means that it does not belong to P unless a// members of NP belong
to P.

Other NP-complete problems:

« bin packing (finding the best way to arrange boxes of different
sizes in a truck so that the maximum amount of cargo fits in)

» task scheduling (scheduling tasks of various lengths for a fixed
number of workers so that the work is done as quickly as
possible)

¢ some problems related to finding solutions to formulas in formal
logic.

Imperfect solutions: When faced with these problems, we usually have
to settle for imperfect solutions from algorithms that work in poly-
nomial time but do not always find the very best solution.
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Key 51 Turing machines and the

halting problem

OVERVIEW A Turing machine, developed by Alan Tur-
ing (1912-1954), is an imaginary machine that serves as a
mathematical model of a real computer with its program. A
Turing machine consists of a processor with a finite number
of internal states, plus a paper tape divided into blocks or
cells, each of which contains one symbol chosen from a
finite set of possible symbols.

How a Turing machine works: The internal states are like instruction
codes that control how the machine responds to input.

s After reading one cell from the tape, the machine will either write
something back onto the tape, or move the tape one step left or
right.

¢ Then it will go into another specified internal state or halt.

« The tape can be infinitely long; it serves as the input, output, and
memory for the machine.

Church’s Thesis: Proposed by Alonzo Church, the hypothesis that
Turing machines do indeed have the same computational power as
any tmaginable digital computer. This seems reasonable because no
way has been found to make Turing machines more powerful. Adding
additional tapes or other mechanisms does not expand the range of
computations that the machine can perform.

The halting problem: Using Turing machines, it can be proven that
there is no general solution for the halting problem — that is, there
can never be a computer program that can always tell you whether
another program will terminate.

« Obviously, you can prove that some programs terminate (just ron
them and watch them do it), and you can prove that some other
programs go into infinite loops (watch them and see that nothing is
changing). But there will always be cases where you can do nei-
ther.

Proof that there is no general solution to the halting problem:
¢ Suppose you had a program Q that could read another program W
as input, and tell you whether W haits. (By ‘‘program’’ we mean,
where context requires it, ‘ ‘program together with its input data,”’
and we reserve the right to make a finite number of copies of it as
needed.)
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« Then, using Q as a subroutine, you could construct a program S
that reads W and halts if W does not halt, or goes into an infinite
loop if W halts. That is, S halts if and only if its input, W, does not
halt.

e Now feed S a copy of itself (let W=3S).

« Then S halts if and only if S does not halt, which is a contradiction.
Hence S cannot exist. The only part of S that is questionable is its
subroutine Q. Hence Q cannot exist.
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K:’y. 52 Formal languages and aﬁtomata

OVERVIEW A formal language is a set of strings of
symbols. The symbols need not have meanings, a formal
language is not a system of communication. Rather, the
strings of symbols usually represent successive actions per-
formed by a machine (an automaton; plural, automata).

Generating infinite sets: An infinite set of strings can be described by
giving a set of rules (a grammar) that generates (constructs) all and

only the strings in the language. The nature of the rules indicates the

computational power needed to create the strings.

Finite-state grammars: The simplest formal languages are generated by
finite-state grammars (FSGs). An FSG is like a machine with a
finite number of states. The machine starts in a particular state, and
from each state can go to specific other states, outputting a symbol as
it does so.

Memory: Such a machine has no memory except that it knows which
state it is in at any moment. Example: Consider now the formal lan-
guage {ab, aabb, aaabbb, aaaabbbb...} (called a"b" for short), in
which each string has some number of a’s followed by an equal
number of 4’s An FSG cannot generate this language, because when
it starts generating b’s it has no way to remember how many a’s it
previously generated.

Context-free phrase-structure grammars: To generate a”b" we need a
context-free phrase-structure grammar (CE-PSG) consisting of
context-free rewrite rules each of which rewrites one string as
another.

+ In addition to the terminal symbols a and b, which appear in the
language, we also use the non-terminal symbol S. The rules
are:

S —ab
S — aSb

* Thatis: Anywhere an S appears in the string, it can be rewritten as
either ab or aSh. (The grammar is called context-free because it
does not care what context surrounds the symbol that is being
rewritten.)

* The starting symbol in this grammar is S. To generate aaabbb,
we rewrite S as aSh, then aaSbb, then aaabbb.

* A CF-PSG is equivalent to a computer with a single pushdown
stack for memory (a pushdown automaton).
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More powerful grammars: Even context-free phrase-structure gram-
mars cannot generate a"b"c" or numerous other languages. For this
we need unrestricted (context-sensitive) rewrite rules, which have
the power of a Turing machine.

Transformational grammars: Noam Chomsky and other linguists have
used formal language theory to investigate the grammar of human
languages (English, French, etc.), usually using transformational
grammars, which are CF-PSGs extended with additional types of
rules. (See Key 71.)
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Theme 9 NUMERICAL METHODS

umerical methods are techniques for using computers

to solve mathematical problems with numbers. These
include not only straightforward calculation, but also nu-
merical equation solving (by successive approximations),
interpolation, simulation, and statistical tests.

INDIVIDUAL KEYS IN THIS THEME
53 Paradoxes of computer arithmetic
54 Numerical equation solving

55 Symbolic equation solving

56 Interpolation

57 Random numbers

58 Simulation

59 Statistics that summarize data

60 Statistics that test hypotheses

61 Permutations and combinations
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Key 53 Paradoxes of computer
arithmetic

OVERVIEW The accuracy of computer arithmetic is lim-
ited by the finite number of digits and by the fact that some
numbers have no exact binary representation, and hence are
subject to rounding error.

Rounding error: Try the following calculation on your computer:
X:=0.9+0.1; writeln(x);
In Turbo Pascal on an IBM PS/2, X comes out as 1.0000000001. This
happens because of rounding error. The number 1/10 (=0.1) has
no exact binary equivalent, and neither do most other decimal
numbers.

Conversion: Try to express 1/3 as a decimal number. 0.333333 is close;
0.33333333333333 is closer; but no finite number of digits will equal
1/3 exactly. The same problem arises when the computer converts 0.1
into binary. A correct conversion would require an unlimited number
of digits.

Exact equality: On the computer, 0.1 + 0.9 # 1.0. The moral: never
test for exact equality of floating-point numbers that result from
computation. Instead, test whether they are sufficiently close to-
gether.

Acceptability: Some rounding error is acceptable in scientific comput-
ing, but financial work requires exactness; you would not want to lose
a fraction of a cent every time you paid a bill. Financial computing
often uses BCD (binary-coded decimal) arithmetic, in which the
computer works with representations of decimal digits.

Significant digits: Other problems arise from the limited number of
significant digits available on the computer.

¢ In arithmetic, A+(B+C) = (A+B)+C.

* But suppose A = 0.000001, B = 1000, and C = --1000.

e Then, on the computer, A+(B+C) = 0.000001, as expected.

* But (A+B)+C causes a problem: 0.000001 + 1000 =
1000.000001, which may get truncated to 1000.000 if not enough
digits are available.

* Then adding —1000 gives 0, and the original value of A is totally
lost. As a result, (A+B)+C does not come out the same as
A+(B+C).
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Key 54 Numerical equation sdli_}ih_g

OVERVIEW  People normally solve equations analyti-
cally, by manipulating formulas. Some equations cannot be
solved this way. The computer can still solve them numeri-
cally, by successive approximations.

Analytic equation solving: The equation x + 2 = 2x can be solved by
subtracting x from both sides, then simplifying 2x — x to x, giving
x = 2. But some equations have no analytic solution. Example:
x = sin x — 7. There is no way to get x by itself on one side of the
equal sign and an expression not containing x on the other side.

Numerical equation solving: Such equations can only be solved
numerically, by trying numbers until the solution is found, or by
adding up a converging series. Sometimes it is preferable to solve an
equation numerically even when an analytic solution is available.

The secant method: One way to solve equations numerically is the
secant method. To solve x* = x — 7, for example, define a func-
tion

f=x*~-(x-7)

o That is, define f{x) as the difference between the two sides of the
original equation.

* Then try to make fix) = 0.

¢ To do this, evaluate f{x) with two arbitrarily chosen values of x
(perhaps 1 and 2) and look at the results. One of them will be
closer to O than the other, and the difference between them will tell
you where to move to get even closer to 0.

Limitations: The secant method is not perfect; sometimes
f(cldx)=f(newx), and hence slope=0, leading to division by
zero. Sometimes slope takes on values that are misleading and
cause the next approximation to be a long way away from the true
solution. There are many other numerical methods for solving equa-
tions.
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KEY EXAMPLE

Secant method algorithm in Pascal

oldx :=1;
oldf := f(oldx);
newx := 2;
newf := f(newx);
repeat
slope := (newf-o0ldf)/(newx-oldx);
0ldx := newx;
newx := newx — newf/slope;
oldf := newf;
newf := f{newx);

writeln(newx:15:8,newf:15:8)
until abs{newx-oldx) < 0.00001

89



Key 55 Symbolic equation solving

OVERVIEW A computer can simplify a formula such as
x+5=2x—41t5=x~ 4and thento 9 = x purely by
manipulating the formula, just as people do. This is known
as symbolic equation solving.

Special software:
¢ The most famous symbolic equation solver is a program called
MACSYMA, developed at MIT in the 1960s and still in use.
MACSYMA handles basic algebra and trigonometry and can even
find integrals using a large built-in table and a number of rules.
* Mathematica, a more modern software package for mathemati-
cians, supports both symbolic and numerical equation solving.

How it’s done: Symbolic equation solving requires pattern match-
ing—the equation being solved has to be compared to stored patterns
in order to decide how to handle it. For example, x*> + x + 3 matches
the pattern ax? + bx + c.

Use of trees: Symbolic equation solvers usually represent equations not
as character strings but as trees (Key 45) that show the structure of the
equation (Figure 7). This is easiest to do in symbolic programming
languages such as Lisp (Key 67) and Prolog (Key 68), which can
treat formulas as data. Prolog also has pattern matching built in.

FIGURE 7
Representing an equation as a tree
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(x+y)—z=(x—y}+z/4_
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Key 56 Interpolation

OVERVIEW Interpolation is the fitting of a smooth
curve to a set of points (Figure 8). This is necessary either to
draw a graph, or to fill in missing values in a table. For
instance, if you knew the time taken by a chemical reaction
at 15°C, 20°C, and 25°C, you could use interpolation to
estimate the time at 23°C.

FIGURE 8

Interpolation creates a smooth curve to connect a set of points.

|

Lagrangian interpolation: For any set of » points, there is an (n — )-
degree polynomial whose graph passes right through them. This poly-
nomial is used in Lagrangian interpolation, a technique that works
well when there are only four or five points and the interpolated
values fall between them.
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KEY EXAMPLE

Lagrangian interpolation in Pascal

Here (x[1],y[1l])...(x[n],y[n]) are the known points; ux is
the x-value for the unknown point, and uy is the y-value to be found.
uy := 0;
for k:=1 ton do
begin
pl:=1;
pR:=1;

for j:=1tondo
if j<>k then
begin
pl :=pl*(ux-x[j]);
pR = p2*(x[k]-x[j])
end;
uy :=uy + y[k]*pl/p2
end;

Limitations: With larger numbers of points, Lagrangian interpolation
produces a rather lumpy curve; also, the Lagrangian curve tends to go
sharply up or down at the ends. For best results, use Lagrangian
interpolation with 4 known points, two above and two below the
unknown point.

Alternatives; More natural-looking curves can be obtained with cubic
spline interpolation. With cubic splines, each segment of the curve
is influenced only by the two points that it connects, plus the slopes of
the two adjacent segments that it links to.
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Key 57 Random numbers

OVERVIEW  Many computer simulations and games use
random numbers. Nothing is truly ‘‘random’’ (unpredict-
able) on a properly functioning computer. Numbers are con-
sidered random if they follow no discernible pattern (or at
least no pattern related to what they are being used for) and
are evenly distributed (so that each has an equal probability
of occurring).

Random numbers: Seemingly random numbers are common in math-
ematics. Example: Look at the middle digits of a function such as
sine, cosine, or square root:

X sin x

1° 0.017452406
2° 0.034899496
3° 0.052335956
4° 0.069756473

The first digits (0.017, 0.034, etc.) are non-random since they reflect
the value of the function. The rightmost digits are unevenly distrib-
uted because of inaccuracy. The middle digits (shown in boldface) are
effectively random.

A more practical algorithm: A faster way to get random numbers is to
pick an arbitrary integer & (the seed) and repeatedly compute:
k := (k*106 + 1283) mod 6075

¢ This makes k take on seemingly random values from 0 and 6074
inclusive.

* The coefficients 106, 1283, and 6075 are carefully chosen so that
the sequence of numbers does not repeat until the 6075th itera-
tion.

Using the random number generator:
e To get random floating-point numbers from 0 to 1, use
k/6074.
» To get random integers in a smaller range O to n-1, use £ modulo
n (where n is much less than 6074).

Unguessable numbers: This formula produces the same random num-
bers each time you use it with the same seed. To get unguessable
numbers for games and the like, start £ with a number obtained from
the system clock, such as the time of day in milliseconds.

93



Limitations: This kind of formula is called a linear congruential gen-
erator. Note that it uses large integers; in this example, k* 106 can
be as high as 643,844, too bit to fit into a 16-bit integer. Most pro-
gramming languages have a built-in random number generator that
works around this problem by breaking the multiplication and modulo
operations into intermediate steps.
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Key 58 Simulation

OVERVIEW To simulate something is to model its inter-
nal workings on the computer. This is often done to study
processes that are too complex to analyze mathematically.

KEY EXAMPLE

A simulation

Suppose you want to know the best way to time the traffic lights in a
small town.

After collecting data on the number and speed of cars in each direction,
how quickly they accelerate when the light turms green, etc., you could
try to derive a mathematical formula to give the optimum traffic light
timing. But this could be immensely difficult.

A simpler approach would be to model the streets and traffic lights on
the computer:
* Write a program that keeps track of the positions of cars on an
imaginary set of streets just like the real ones.
¢ Introduce imaginary cars with known, realistic behavior, and cal-
culate what their positions would be every few seconds.
* Run many simulations with different traffic light timings until the
traffic moves the way you want it to.

Calculating probabilities by simulation: Simulation is also useful to
calculate probabilities of events that are complex combinations of
many causes.

KEY EXAMPLE

Finding probabilities by simulation

Suppose for example you are manufacturing radios. Each radio has per-
haps 100 components, each of which has a known probability of being
out of tolerance (actually, a known distribution, Key 57). Sometimes,
variations in components don’t matter, and sometimes they even cancel

_each other out.
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Given the probabilities that each component will be out of tolerance,
what is the probability that the whole radio will not work? Again, you
could try to derive the probability mathematically, but simulation is
easier.

+ Randomly choose a set of characteristics for all of the parts, then
calculate whether the radio works. Do this again with another set
of randomly chosen parts, and another, and another.

¢ Make sure that the random values for each simulated component
have the same statistical distribution as the values for the corre-
sponding real component.

e Then the fraction of simulated radios that work will be a good
estimate of the fraction of real radios that work.

Monte Carlo methods: Simulation can even be used to solve purely
mathematical problems. In this case simulations are called Monte
Carlo methods (Monte Carlo is a gambling resort).

KEY EXAMPLE
Finding an integral by Monte Carlo methods

Suppose for example that you want to find the area of an irregularly
shaped figure.

Suppose further that you have no analytic way to find the area, but you
do have an easy way to test whether any particular point is within or
outside the figure. Then here’s how to proceed. .

¢ Draw a rectangle around the irregular shape, then choose random
points within that rectangle.

e As you use more and more random points, the fraction of them that
fall in the irregular shape will give you a better and better indica-
tion of what fraction of the rectangle is filled by the shape.

¢ The points have to be random so that you can be sure that their
distribution will not have any special relationship to the irregularly
shaped figure that you are trying to investigate.
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Key 59 Statistics that summarize data

OVERVIEW  Statistics such as the mean, median, mode,
variance, and standard deviation are ways of describing,
with just a few numbers, the distribution of a large number
of measured values.

Distribution: Figure 9 shows a histogram of the scores of an imaginary
exam on which everyone scored between 90 and 100. The shape of
the histogram represents the distribution of values.

Types: This particular distribution is unimodal (one-peaked; if it had
two peaks it would be bimodal). In fact this histogram is almost
perfectly Gaussian (‘‘normal,”’ bell-curve-shaped)—the distribu-
tion that is expected when each value is the sum of many random
variables.

FIGURE 9

Histogram of imaginary exam scores
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Measures of central tendency:

¢ The mean (‘‘average’’) is the sum of the values, divided by the

number of values. Thus, for n values A;...4,,
mean = (A; + A, + ... + A)/n

* The median is the value that has an equal number of other values
above it and below it.

e The mode is the value that occurs most often (the peak in the
histogram).

Effects of distribution: In a perfectly Gaussian distribution, the mean,
median, and mode are the same. But the mean is excessively affected
by non-Gaussian distribution and especially by outliers (values far
away from the mean). Suppose one student had scored 20 instead of
91. This would lower the mean quite a bit, but the mode and median
are not affected at all.

Measures of deviation: The variance (o) tells how wide the peak is—
whether all the values are bunched close to the mean or whether they
are far away from it:

variance = [(A;—mean)? + (Ay—mean)® + ... + (A,—mean)?}/n

You can think of the variance as a kind of average of the distance

from each value to the mean.

¢ We square the distances to make them all positive so they don’t
cance] each other out.

e Squaring also makes one big distance count more than two small
distances.

Standard deviation: The standard deviation (root-mean-square, o)
is the square root of the variance.

Sample; If computed on a random sample of the data rather than the
whole set, the variance and standard deviation tend to come out too
small; to correct for this, replace n in the above formula by (n — 1).

98

Key 60 Statistics that test hypotheses

OVERVIEW  The statistics in Key 59 merely summarize
data. Statistics are also used to test hypotheses (for exam-
ple, does high cholesterol cause heart disease?). The crucial
problem here is inference from a sample. You cannot exam-
ine all the people who have high cholesterol, merely a sam-
ple of them.

How to analyze a sample:

» The first question is whether the sample is fair, i.e., typical of the
population. Unfortunately, no mathematical test can tell you
this.

e The next question is whether two things are correlated in the
sample. That is, is heart disease more common among people in
the sample who have high cholesterol than among the other people
in the sample? If so, high cholesterol and heart disease are posi-
tively correlated.

e The third question is whether the correlation is significant. That
is, does it reflect a correlation in the population as a whole, or is it
just an effect of sampling? After all, the incidence of heart disease
in two randomly chosen groups of people will almost never be
exactly the same. A sample is only a sample.

Significance: Significance is measured relative to a confidence level.
“‘Significant at the .05 level’” (sometimes called .95 level) means
there is only a 5% chance, or less, that the correlation is an illusion
caused by sampling.

Tests: Several significance tests are in common use. The chi-square
test tells you whether several alternative outcomes have the predicted
set of probabilities. The t test tells you whether the means of two
different populations are the same (even though the means of the
samples are different).

Size vs. significance: Significant differences should not be confused
with large differences. Suppose something raises a person’s chance
of heart disease from 0.06 to 0.0600001. With a gigantic sample, this
could be a significant difference, but it is definitely not large.

Certainty: Remember, too, that significance is not certainty. If you
find 100 things to be significant at the .05 level, then on the average,
about S of them will nonetheless be illusory.
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Key 61 Permutations and combinations

OVERVIEW This is a review of some essential concepts

and formulas used in calculating the number of steps in a

computation.

Permutations
* The permutations of n objects are the sequences into which n

objects can be arranged.

KEY EXAMPLE

Permutations of n objects

Suppose there are 12 objects. When you choose the one to put first, you
have 12 to choose from. After each of these, you then have 11 choices
for what to put next, then 10 choices of what to put after that, and so on.
So the number of permutations is

PA2) = 12 X 11 X 10X 9 X 8XTXEXS5X4X3X2X1
or more generally,

P)=nX (1) X (n2) X ... X3 X2 %X 1=n!

where n! denotes n-factorial.

« The permutations of n objects taken m at a time are the
sequences in which you can arrange the first m objects that you
choose from a set of n.

100

KEY EXAMPLE

Pemutations of # objects taken m at a time

Suppose you want to choose any 8 out of a set of 12. Then the formula is
like the one above, but only the first 8 choices count:

P(12,8) = 12 X 11 X 10 X 9 X 8 X T X 6 X 5

Think of this as P(12) except that the sequence of the last 4 elements does
not count because those elements are not chosen. So P(12) should be
divided by the number of sequences that we are treating alike in each
case:

P(12,8) = P(12)/P(4)

P(n,m) = P(n)/P(n-m) = n'/(n-m)!

Combinations: Combinations are like permutations except that order
doesn’t count at all.

KEY EXAMPLE

Combinations of n objects taken m at a time

In this case, if you're picking 8 elements from a set of 12, you don’t care
about the order of the 8 elements that you choose, nor the order of the 4
that you don’t choose.

So C(12,8) will be P(12) divided by P(8) and also divided by P(4):
C(12,8) = P(12)/(P(8) X P(4)) = 12!/(8! X 4})

C(n,m) = n!/(m! X (n-m)!)

Subsets: Finally, any n-element set has 2" subsets. The set of all subsets
of a set is called its power set.
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Theme 10 COMPUTER GRAPHICS

C omputer graphics is the creation and manipulation of
pictures or images by the computer. An image usually
represented as an array of pixels (picture elements). Com-
puter graphics includes not only the generation of images by
computer, but also the computer processing of pictures from
other sources.

INDIVIDUAL KEYS IN THIS THEME
62 Basic graphics

63 Graphics programming

64 Image processing
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Key 62 Basic graphics

OVERVIEW Vector and raster representations are used
to create and display images on the computer.

Vector graphics: In vector graphics, the output device draws a smooth
line between two points; the whole image is a combination of such
lines. Vector graphics is used with pen plotters that draw on paper
with a pen.

Raster graphics: Computer screens and printers, however, use raster
graphics, in which the image is an array of dots called pixels (pels)
(Figure 10), numbered with x and y coordinates.

Resolution: The resolution of the display is the number of pixels avail-
able (1024 X 1024 on modemn workstations, 320 X 200 on low-cost
home computers).

Printers: These usually have gigantic resolution (e.g., 300 dots per
inch, or 2400 X 3000 on an 8X10-inch printout), but this is no
advantage if the program prints the same pixels that are shown on the
screen.

FIGURE 10
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Bitmaps: Black-and-white (monochrome) raster graphic images are
represented in memory as bitmaps, with one bit indicating whether
each pixel is on or off. Bitmaps are easily compressed with run-
length encoding (Key 48).

Color internal representations: Color images use more than one bit per
pixel, e.g., 4 bits per pixel for 16 colors. These are often divided into
planes so that there in one bitmap for red, another for green, another
for blue, and another for extra intensity, and all colors are made by
mixing these primary colors.

Program vs. screen: It is common practice to use vector graphics inside
a program to describe images concisely, even though the screen uses
raster graphics.

Turtle graphics: Some programs use turtle graphics, a variant of vec-
tor graphics in which a line is drawn by a pointer that accepts instruc-
tions of the form, ‘‘“Move n pixels forward... change direction n
degrees to the right or left.”

Paint programs and draw programs: The different advantages of vec-
tors and bitmaps are illustrated by the two kinds of programs that
allow computer users to create and edit drawings.

» Paint programs such as MacPaint (on the Macintosh) let the user
edit the pixel array directly with tools that act like pencils, com-
passes, brushes, erasers, etc.

* Draw programs such as MacDraw do not edit the bitmap directly;
instead they maintain a linked list (Key 45) of vector-like objects
(lines, circles, etc.) which can be moved around independently of
each other, even when they occupy overlapping pixels.
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Key 63 Graphics programming

OVERVIEW Programming languages that support
graphics have a large number of built-in procedures for
drawing lines, circles, and curves, and for transforming
images.

Scan conversion: A central concern of computer graphics is scan con-
version, the creation of raster graphics from other kinds of descrip-
tions.

Built-in routines: Most programming languages that support graphics
have line- and circle-drawing routines built in. These usually use
Bresenham’s algorithms, which run fast because they use only inte-
ger artthmetic.

Filling: Another common built-in operation is filling a closed area with
a color.

Curves: Spline curves connect points with smooth curves. Whereas
interpolation (Key 56) requires curves that go through all the points
in a set, graphic images often use Bézier splines, each of which
connects two points and is pulled toward, but not into, other ‘‘influ-
ence points’’ along the way.

Transformations:

« Coordinate transformation is the resizing or rotation of a 2- or
3-dimensional image.

* Projection is the rendering of three dimensions in two. Projections
are done from a specific viewing angle, with or without perspec-
tive. Projection usually requires hidden-line removal or hidden-
surface removal. A wire-frame image does not attempt this, but
merely draws the outline of the whole object, as if all the edges
would be visible at once.

Color: In computer graphics, color is normally handled through pal-
ettes. A palette is a lookup table that relates color numbers (O to 3, 0
to 15, or 0 to 255) to actual mixtures of red, green, and blue. When an
entry in the palette is changed, all areas of the image whose color
number is affected instantly change color.

Ray tracing: Highly realistic images of 3-dimensional objects can be
generated through ray tracing. The computer can calculate exactly
how much light would reflect off each point on the object being
depicted, given the texture of the surface and the characteristics of the
light source.
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Key 64 Image processing

OVERVIEW I'mage processing is the manipulation of an
image by computer. This is normally done to make impor-
tant details more visible. For instance, the images sent back
to earth by space probes are almost always computer-
processed.

Brightness: One task is to adjust the brightness range of the picture.
This is done by constructing a histogram (Key 59) of the brightnesses
of the pixels, then transforming the brightnesses to spread them out
over the available range. This corrects a picture that is too light or too
dark or has too little contrast.

Color: Color can be corrected, and false-color images can be produced
in which colors are greatly exaggerated (as in the pink-and-blue Voy-
ager pictures of Saturn).

Filtering: Another kind of processing is local contrast enhancement:
make a pixel brighter if it is already brighter than the average of its
neighbors, and darker if it is already darker than the average of its
neighbors. This makes low-contrast detail more visible without
changing the brightness range of the picture as a whole.

Fourier transform: Local contrast enhancement is actually a kind of
filtering; implicitly, it works on a Fourier transform of the image.
This is so because it favors details of a particular size.

* A Fourier transform translates an image into a set of spatial fre-
quencies (detail sizes), just as the Fourier transform of a sound
wave would translate it jnto a spectrum of audio frequencies.
Some of these frequencies can then be amplified or suppressed
before the Fourier transform is converted back into an image.

* This makes it possible to filter out stripes, speckles, and other
imperfections. More sophisticated manipulations can even re-
focus a blurred image, provided the exact nature of the blur is
known. This is being done to overcome optical defects in the Hub-
ble Space Telescope.
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Theme 11 ARTIFICIAL
INTELLIGENCE

Artiﬁcial intelligence (AI) is the modeling of human
thinking by computer. Its main areas are general prob-
lem solving, automated reasoning, expert systems, natural
language processing, robotics, computer vision, and neural
networks. Most Al programming is done in the Lisp and
Prolog languages.

INDIVIDUAL KEYS IN THIS THEME

65 Can computers be intelligent?

66 Solving problems by searching trees
67 Lisp

68 Prolog

69 Automated reasoning

70 Expert systems

71 Natural language processing

72 Robotics and computer vision

73 Neural networks
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Key 65 Can computers be intelligent?

OVERVIEW  There has always been debate as to whether
computers can ever really think, and how we might test
whether they are doing so. The Turing test is a classic def-
inition of intelligence as applied to machines.

Goal: The original goal of Al was to make computers intelligent. But
often, as soon as computers become able to do some particular thing
(such as play chess or understand English), people stop saying that
that ability constitutes ‘‘intelligence.’’

Turing test: In 1950, Alan Turing proposed the Turing test (imitation
game); if a computer, communicating only by teletype, can convince
another human that it is 2 human being, then the computer possesses
human-like intelligence.

Searle’s Chinese room: In reply, philosopher John Searle offers the
Chinese room argument.
¢ Suppose a person who speaks only English memorizes a large set
of rules that tell him how to answer questions in Chinese. The rules
do not say what the Chinese questions mean— they only say how
to construct an answer.
e Eventually, this person should be able to pass the Turing test in
Chinese even though he does not know the meanings of any Chi-
nese words and cannot be said to understand the questions.

Intentionality: Searle’s point is that human-like intelligence requires
conscious awareness and intentionality, not just the ability to carry on
a natural-sounding conversation. This does not prove that machines
will never think; it only shows that the Turing test is not an adequate
way of judging whether a machine has human-like intelligence.

Philosophical context: The Turing test is analogous to the philosophical
problem of other minds: How do you know that people other than
yourself have thoughts and feelings? For all you know, they may just
be giving convincing answers to questions like the man in Searle’s
Chinese room. Obviously, this is a ridiculous conclusion, but dis-
proving it is difficult.

What is intelligence? Over the years it has become obvious that there is
no single mental ability called ‘‘intelligence’® (as used to be
claimed by advocates of IQ tests); instead, people have many differ-
ent mental abilities. Thus, Al is a matter of modeling many different
human abilities, not just one.
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AI today: Al started out in the 1950s as the study of how to make
computers think like people. But this goal may be obsolete. Today it
is more accurate to say that artificial intelligence is the computer
modeling of human mental abilities, for either of two purposes: to
understand the human mind better or to make computers more pow-
erful.
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Key 66 Solving problems by searching

trees

OVERVIEW Intelligent behavior often involves finding
the right series of actions to reach a goal. One way to do this
is to set out the choices in a goal tree (search tree, game
tree) and then search the tree.

KEY EXAMPLE

Figure 11 shows a maze, together with the same maze rearranged as a
tree.

The tree diagram shows where you can go from each position provided
you never back up. Similar trees could describe games of chess, check-
ers, etc., showing the possible moves at each stage.

To solve the maze, all you have to do is search the tree from START
until you find FINISH. The important thing is that the tree shows the
structure of the problem, and any method of solving the problem is
equivalent to some form of tree search.

Depth-first search: In depth-first search, you follow each branch to its
end, then back up to the most recent untried alternative. On the tree in
Figure 11, you would visit positions 2, 1, 6,7, 8, 13,3, 4, 5,9, 14,
etc., in that order.

Breadth-first search: In breadth-first search you move forward only
after trying all the alternatives at a particular level. A breadth-first
search would visit positions 2, 1, 3, 6, 4, etc., in that order.

* To implement depth-first or breadth-first search, keep a list of
positions you are going to visit (initially just {2}, then {1,3},
etc.).

* Visit whatever position comes first in the list. When you do so,
remove it from the list and add the positions that are reachable
from it in one move. For a depth-first search, add these at the
beginning of the list; for a breadth-first search, add them at the
end. Then visit whatever is now first in the list, and so on.

Heuristic search: A heuristic search strategy does not visit every node,
but only the ones that seem likely to lead to a solution. With a heu-
ristic search, you run the risk of failing to find a solution, but most of
the time you will find a solution more quickly than with a complete
search.
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FIGURE 11

A maze and a goal tree for solving it
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Key 67 Lisp

OVERVIEW Most American Al research has used the
programming language Lisp (List Processor), developed by
John McCarthy around 1958. Lisp is especially suitable for
Al because it is a symbolic language, designed to handle
lists, trees, formulas, and other complex data structures,
and to create them easily at run time. Lisp is also reflexive,
which means the program can modify itself. A Lisp program
can create Lisp expressions, then execute them.

Expressions: The basic Lisp operation is to evaluate a symbolic
expression. Example: (+ 23 ) evaluatesto5. More formally, (+23)
means ‘‘Pass 2 and 3 as arguments to the function whose name is +."’

Quote: The quote operator prevents evaluation. For instance, ' (+ 2 3)
evaluates to the list (+ 2 3), not the number 5.

CAR, CDR: The functions CAR and CDR separate a list into, respec-
tively, its first element and a list of the remaining elements. For
example,

(CAR'(ABC)) = A

(CDR’(ABC)) = (BC)
The CDR of a one-element list is ( ), the empty list, also called
NIL.

noll

KEY EXAMPLE
A Lisp program

This recursive function in Lisp that counts the number of elements in a
list. In English: ‘“The number of elements in NIL is 0. The number of
elements in any other list is 1 plus the number of elements in its CDR.”’
The function is defined by evaluating this DEFUN expression.

(DEFUN COUNT-ELEMENTS (L)
(IF (= L NIL)
0
(+ 1 (COUNT-ELEMENTS (CDR L)))))

Lisp machines: Special minicomputers designed to run Lisp efficiently.
They originated at MIT around 1980 and have been manufactured
commercially by Xerox, LMI (GigaMos), and Symbolics.
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Key 68 Prolog

OVERVIEW The programming language Prolog (Pro-
gramming in Logic) is widely used in newer Al research. It
is especially well suited for expert systems (Key 70) and
natural language processing (Key 71) because, in addition
to being symbolic and reflexive like Lisp, it has depth-first
search (Key 66) and pattern-matching (unification) built in.

Programming in logic: Alain Colmerauer invented Prolog around 1974
as a computer implementation of formal logic (““logic program-
ming’’). A program (or knowledge base) consists of clauses, which
are of two types: facts, which stand alone, and rules, which call other
clauses.

KEY EXAMPLE

In Prolog, the fact “‘“Michael is the father of Cathy’’ can be expressed
as

father(michael, cathy).
and the rule ‘X is a parent of Y if X is the father of Y’ is written
as

parent(X,Y) :— father(X,Y).
These define the predicates father and parent. Given these, the
Prolog system can answer the query

?-parent(michael,W).
by displaying the solution W=cathy.

Recursive list processing: In Prolog, matching a list with [X | Y] will
make X equal to the first element and Y equal to the list of remaining
elements.

KEY EXAMPLE

Here is a Prolog procedure that counts the elements of a list (compare
Key 67). The procedure has two definitions; one matches the argument
[ ] (the empty list) and the other matches any list that can be split into
CAR and CDR.
count elements([],0).
count_elements([X | Y],N) :—
count elements(Y,M),
Nis M+1.

113



Key 69 Automated reasoning

OVERVIEW One important task of artificial intelligence
is to emulate human logical reasoning. In this, Al is assisted
by formal logic, the mathematical modeling of logical think-

ing.

Truth-preserving inference: The key idea of logic is that some kinds of
reasoning are truth-preserving, i.e., if you start with true premises
(assumptions), you will certainly end up with true conclusions.
Example: If all men are mortal and Socrates is a man, then Socrates is
mortal, and you know this even if you don’t know what man or mortal
or Socrates means.

Limits: Logic cannot tell you whether the premises are true. Logic only
tells you that if the premises are true, then the conclusions are also
true.

Boolean algebra: George Boole (1815-1864) was the first to realize that
logical arguments can be manipulated like mathematical formulas
(Boolean algebra). Example: From (Vx)man{x)—mortal(x) and
man(socrates) the rules of logic allow you to prove (derive) the con-
clusion mortal(socrates).

Algorithms: Most automated reasoning systems are built around
theorem-proving algorithms; indeed, such an algorithm is built into
Prolog (Key 68).

Classical logic: It has been shown that classical logic is incomplete,
i.e., some theorems will never be proved by any algorithm. Some
other theorems are provable but are missed by particular algorithms
(including Prolog's) in the interest of efficiency.

Nonclassical logics: Unlike classical formal logic, human reasoning can
deal with uncertainty and exceptions.

« One way to model this on the computer is to replace the two values
““true’’ and ‘‘false” with a continuum from O to 1 (confidence
factors, certainty factors, fuzzy logic).

» The other is to use default reasoning (defeasible reasoning), in
which some conclusions are drawn only tentatively and can be
revised when further information is available.
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Key 70 Expert systems

OVERVIEW  The most successful industrial applications
of Al so far are expert systems, which are computer pro-
grams that give advice and draw conclusions just like a
human expert. Expert systems are often used to diagnose
diseases, identify defects in machines, and select products.
MYCIN, an early expert system developed at Stanford Uni-
versity, was able to identify blood infections more reliably
than human doctors.

Why use expert systems? Although intrinsically less intelligent than a
human being, an expert system has the advantages that it is:
» consistent (always does the same thing in the same situation);
* easy to replicate (you just copy disks instead of training more
people);
+ able to handle a large database without forgetting any of the
information.

Components: Each expert system consists of a knowledge base of
human-like knowledge, an inference engine for applying this knowl-
edge to a real-life situation, and a user interface for communicating
with the user.

Chaining: A forward-chaining inference engine starts with data and
tries to draw conclusions from it. A backward-chaining inference
engine works through a set of conclusions (e.g., possible diagnoses)
and determines which of them are consistent with the data.

Knowledge engineering: The knowledge base is usually built with
information obtained from a human expert in the field. This process is
called knowledge engineering and is often done through repeated
interviews.

Format of knowledge base: Expert systems are not based on flow-
charts or decision trees. The job of the inference engine is to find
and apply the rules and facts that pertain to the situation at hand.

Maintainability: Expert systems should be maintainable. That is, it
should be easy to check for errors in the knowledge base. This
requires that each rule or fact should be understandable in isolation.
Systems based on certainty factors (Key 69) often have trouble here,
because there is no way to tell which rule will win out, in a conflict,
without looking at all the other rules.
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Key 71 Natural language processing

OVERVIEW  Natural language processing (NLP) is the
understanding of human languages by a computer. This
does not always mean the computer must think like a human;
all it means is that the computer should be able to use
English, French, or another human language to accept the
kind of data it normally processes.

Why NLP is hard: One difficulty with NLP is that nobody knows exact-
ly how human languages work. The human brain is genetically pre-
programmed to learn language, and children learn to talk almost auto-
matically. Although we humans can speak languages, we cannot
explain or describe how we do it.

Simple NLP systems: Template and keyword NLP systems do not try
to replicate human language ability; they just recognize words and
phrases in limited contexts. For many practical purposes, this is suf-
ficient because there are only a few things the human user can say.
Example: Suppose you want to use English as the command language
for a computer. You can assume that users will tatk about disks, files,
etc., but not about the meaning of life.

Levels of linguistic analysis: More sophisticated NLP systems analyze
language on several levels (although the levels interact):

+ Phonology studies how speech sounds are used in a language.
Speech recognition by computer is difficult because speech
sounds overlap in time (the a and ~ in the word man are almost
simuoltaneous) and because different people speak differently.
Speech synthesis is much easier, though the resulting speech does
not sound entirely natural.

* Morphology is the study of word formation (simple in En-
glish).

» Syntax is sentence structure. Syntactic analysis is called parsing;
it involves breaking sentences into constituents (Figure 12).

» Semantics (meaning) and pragmatics (use of language in context)
are much harder to computerize because they involve the relation
between the language and the knowledge to be expressed in it. A
big challenge is ambiguity (use of the same word with different
meanings in different contexts).
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FIGURE 12

Constituents of an English sentence

SENTENCE

/\

NOUN PHRASE VERB PHRASE

/\

VERB NOUN PHRASE

/\
DETERMINER NOUN DETERMINER  NOUN

l | | I
The dog chased the cat
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Key 72 Robotics and computer vision

OVERVIEW A robot is a computer that manipulates
objects or moves itself around. Computer vision is the rec-
ognition of objects in a digitized image (Key 64). This is
used not only for robotics, but also for recognizing written
characters (optical character recognition, OCR) and many
other purposes.

Robotics: Long before any robots were built, science fiction writers
envisioned two types: android robots, which resemble the human
body, and usiform robots, which are built for specific tasks. Since
the 1960s, usiform robots have been used regularly for handling
radioactive materials, assembling machinery automatically, and sim-
ilar tasks.

e A robot has sensors that tell it where things are, and effectors
(actuators) that move things.

e All but the simplest robots rely on a feedback loop between sen-
sors and effectors. To move something 20 centimeters, a robot
does not just blindly execute a movement 20 cm long; it moves
until its sensors tell it the right position has been reached.

Computer vision: Computer vision is at least as complicated as natural
language processing (NLP, Key 71) and resembles it in an important
way: both computer vision and NLP try to replicate something that
the human brain is genetically pre-programmed to do. In the case of
vision, this pre-programming is very specialized. For example, peo-
ple are especially good at recognizing human faces.

Recognizing objects: To recognize objects in images, the computer
must do three things:

* Image processing to discard irrelevant information and make the
relevant information easier to get to.

» Pattern recognition to identify objects (or components of objects)
in the image. This can be difficult because the same object looks
different when viewed from a different angle or in different
light.

e Scene analysis to figure out how the objects fit together. This
includes perspective (reconstruction of 3 dimensions from 2), as
well as some knowledge of the physical world.
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Key 73 Neural networks

OVERVIEW The human brain is very efficient at some
things that have turned out to be very hard to do on conven-
tional computers. This is apparently because the brain’s
structure is very different from a computer. Neural net-
works are computing techniques that simulate the internal
structure of the brain.

Theory:

« Inside the brain, nerve cells (neurons) are connected in such a way
that each neuron has many inputs but only one output (which how-
ever can go to more than one other neuron). The strength of the
output is proportional to the sum of the inputs.

¢ Some neuron outputs excite, and others inhibit, the neuron inputs
to which they are connected. The network learns by adjusting the
strengths of the connections so that a particular input produces a
particular output.

* A neural network on the computer simulates this (Figure 13).

e Importantly, neural networks do not presuppose a digital com-
puter; they could be built with analog hardware, though at present
they are simulated by programs running on digital computers with
floating-point arithmetic.

Practice:

+ To train the simulated neural network, patterns are applied to the
input and output.

* A simple algorithm then adjusts the weights of the simulated con-
nections until the output pattern comes out right. This algorithm
usually includes backpropagation so that the adjustments can
reach neurons other than the last row.

» Simulated neural networks are strikingly good at tasks that defy
conventional computerization, such as recognizing faces or other
patterns.

¢ Like the human brain, they give approximate rather than exact
results.

» Further, their internal structure is not accessible in any mean-
ingful way. Neural networks do not contain anything like the facts
or rules of an expert system. They contain large sets of numbers
which are meaningless to a human being.
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= It is almost impossible to predict with certainty how a neural net-
work will behave with inputs that have not yet been presented to it.
Thus neural networks will never have the reliability that we expect
from conventional computer programs.

FIGURE 13

A neural network

A AR R e

Connections
(each with
its own weight)

¢ ' ¢ ' ¢ Output pattern
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Theme 12 HUMAN ASPECTS OF
COMPUTING

]-'his theme deals with the way computers relate to human
beings. This includes programmers (concerned with
how to write programs reliably), computer users (concerned
with using software effectively), employees (concerned with
working conditions), and society as a whole.

INDIVIDUAL KEYS IN THIS THEME
74 Designing reliable software

75 Testing programs and proving them
correct

76 User interfaces

77 Documentation

78 Copyrights and patents

79 Working conditions and health hazards
80 Effect of computers on society
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Key 74 Designing reliable software

OVERVIEW  Reliability of computer programs is pres-
ently a serious problem, even though computers themselves
are among the most reliable machines ever built. People
take it for granted that every substantial computer program
will contain errors, which are called bugs as if they could
creep in all by themselves. This Key gives guidelines for
bug-free programming.

Think about the problem, not about the computer: Don’t just think of
one way to solve the problem. Think of several ways. Plan the algo-
rithm and the data structures even before you choose the program-
ming language to use. ‘

Use appropriate tools: Whatever makes your program shorter and sim-
pler will make it more reliable.
» Use a programming language that fits the task.
¢ Also use libraries of pre-written code whenever possible.

Divide the program into sections: Limit the ways sections interact, so
that you never have to understand more than about 20 lines of code at
one time. Begin each section with a comment that says what it does.
Write the comments before you write the code.

Make it readable: Use neat layout, meaningful variable names, and
comments. Even you will one day forget how your program works.
This can easjly happen before you finish writing it!

Stop and think: Take the extra minute to convince yourself logically
that your program is correct, rather than programming by trial and
error, If you're not sure whether to write 1<l or i<=1, stop and
figure it out. Don’t rely on testing to find your errors later.
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Key 75 Testing programs and proving

them correct

OVERVIEW  Programs are trustworthy if we are logical-
ly certain that their algorithms are correct. Spot-checking a
program with a few different inputs is no way to make sure it
is error-free.

Why do you trust your pocket calculator? Consider addition of
integers.

* Your calculator can add at least 10,000,000,000,000,000 different
pairs of 8-digit numbers.

* How do you know it adds them correctly? Have you tried them all?
Has someone at the factory? Of course not. You trust your calcu-
lator because you believe it uses a correct algorithm.

¢ That is, whoever designed the calculator could prove mathemat-
ically that it performs addition correctly on all inputs. Such a
proof may not have been actually written down, but the correct-
ness of the algorithm would be obvious to anyone who studied
it.

Applying the same concept to computers: Computer programs should
work the same way. Since the 1960s, researchers have worked on
ways of proving programs correct.
¢ Two practical results have been dataflow analysis (keeping track

of which statements in a program affect which variables) and
structured programming (managing flow of control so that it is
easy to see what will happen, Key 30).

* The concept of proving programs correct has done a lot to make
programs more reliable, even if formal proofs are not written
down. The key idea is that the correctness of a program is shown
not by running it, but by reasoning logically about what it
says.

Doing things the old way: Unfortunately, most programmers follow an
older tradition of testing programs as if they were machines, i.e.,
writing unreliable programs and then randomly spot-checking
for misbehavior. (‘‘Run it and see if it works.”’)

* The trouble with spot-checking is that no one will ever test more
thap a few of the inputs that the program is supposed to pro-
cess.

123



« Reliance on this kind of testing condemns the program to be for-
ever unreliable.

Testing : Program testing is usually divided into alpha-testing (by the
manufacturer) and beta-testing (by selected users). This kind of test-
ing is essential and should be done extensively, but catching errors is
no substitute for preventing them.
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Key 76 User interfaces

OVERVIEW  The user interface of a computer program
is the part of it that communicates with the user. More than
anything else, the user interface determines whether the pro-
gram will be easy to use.

Desirable qualities:

* A good user interface should be understandable and intuitive; it
should let the user think about the problem to be solved, not about
the computer.

* As far as possible, the user should not have to learn new terms or
concepts before using the program.

¢ A good user interface should also be similar to user interfaces for
other, similar programs so that users can apply the computer
knowledge they already have. (Exactly duplicating another pro-
gram’s user interface can, however, violate copyright; Key 78.)

Command languages: For expressing commands or describing data. If
designed systematically, a command language can be powerful and
relatively easy to remember, but time-consuming to type.

Keystrokes: Editors and spreadsheets usually use special keystrokes
for specific actions (e.g., Ctrl-Y to delete a line). This is practical
only if most of the keys are used very frequently, or else the user
cannot remember them.

Menus: An especially popular kind of user interface. In a2 bounce bar
menu, the user moves a colored bar up and down to select an item.
Other menus let the user choose items by typing numbers or let-
ters.

e A particularly good way to make menu choices is to type the first
letter of the word being chosen (e.g., R for Run, E for Edit). This
is not as error-prone as typing arbitrary numbers or moving a
bounce bar.

+ One problem with menus is menu navigation: the user may not
know which menu contains the item he wants to choose, or how to
get to it. Systematic design overcomes this.

Graphic user interfaces: Graphical operating systems such as that of
the Macintosh (Key 23) provide a graphical user interface for all
programs. Menus look alike, and work similarly, for all software on
the computer; as a result, learning to use a new program is not a
venture into the unknown.
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Key 77 Documentation

OVERVIEW  Documentation is the written instructions
provided with a computer program.

Types of documentation:

* Reference manuals that contain complete information about the
program, organized by subject.

* Tutorials for new users.

« ‘“Quick-start’’ tutorials for users who have experience with sim-
ilar programs and want to learn the details of this one guickly.

¢ TUser’s gnides explaining advanced features and techniques to
more experienced users.

¢ On-line help available on the computer while the program is run-
ning.

Good documentation: To write good documentation, you must realize
that you are explaining things to a human being, not just recording
facts on paper. Successful documentation must not only answer the
user’s questions, but also convince the user in advance that it is going
to do so.

Use of examples: When writing documentation, be sure to include plen-
ty of examples so the user can check his understanding. Some users
prefer to learn inductively, figuring out the whole system from a
series of examples rather than by reading about abstract principles.
With complex but well-designed software, inductive learning is espe-
cially appropriate.

Conciseness: Like all writing, documentation must be concise and get
to the point.

Clarity: A common fault is to use words that have not been defined or
leave it unclear what question is supposed to be answered by a par-
ticular chapter in the documentation.

Remember the reader: To avoid these problems, visualize the human
reader (keeping track of what he or she knows) and divide the doc-
umentation into short sections, each with a clear purpose.
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Key 78 Copyrights and patents

OVERVIEW  Copyrights and patents are forms of legal
protection for software.

Copyrights: Copyright (the right to copy) is the exclusive legal right to
make copies of a book, picture, or computer program. Copyright
protects the original author or publisher from loss of income. If
other people were allowed to distribute copies of my programs with-
out paying me, I would not be able to make money programming.

How to copyright: To copyright a computer program in the United
States, you need not register it with the Copyright Office. Just include
a notice of the form ‘‘Copyright © 1990 John Doe’* on the screen and
distribation disk.

Protection: Copyright protects only the author’s exact words (pic-
tures, program code, etc.), not the ideas expressed in them. Writing
another program similar to an existing one, but not copied from it, is
not a violation of copyright. Courts have held that duplicating a
program’s menus or user interface can be a violation of copyright,
even if the program itself is not copied.

Software licensing: A software license is an agreement allowing some-
one to use a copyrighted program. Normally, when you ‘‘buy soft-

ware,”” you are buying the right to use the program on one
machine.

Copy pn_'otection: The use of special kinds of disks to prevent users from
copying a program——uncommon nowadays.

Shall-eware: Software that is distributed free but requires a payment
directly to the author from users. Shareware is copyrighted and the
payment is part of the software license.

Patents: A patent, unlike a copyright, protects an idea (an invention).
For a long time the U. S. Patent Office refused to patent computer
programs on the grounds that an algorithm is a mathematical discov-
ery, not an invention. Recently, however, a few algorithms and
programs have been patented. The present law is somewhat
unclear.
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Key 79 Working conditions and health
hazards

OVERVIEW The main health hazards from using com-
puters are job stress, eyestrain, and backaches (and rela?ed
problems). There is no convincing evidence of a radiation
hazard from computers.

Known health hazards from using computers:

« Job stress. Some jobs that involve computers are very stressful.
Some people have to sit constantly at computer screens and
respond instantly to information appearing there. Not surprisingly,
these people experience severe sess. They are being used as
components in a computer system as if they themselves were
machines. Unlike a machine, a human being needs frequent
breaks, changes of pace, exercise, and, most of all, the dignity th.at
comes from having some control over the way the work 18
done.

+ Eyestrain from blurry screens and glare. Eyestrain does not per-
manently harm the eyes, but it makes many people notice for the
first time that their eyesight is not perfect. This makes them think
that the computer has harmed their vision. Often, eyeglasses are
not designed to focus at the distance of a computer screen.

o Backaches and other muscle, nerve, and joint problems from sit-
ting too long in uncomfortable positions and from lack of exer-
cise.

Radiation hazards? »

» Computers do not emit ionizing radiation (radioactivity). o

« Some computer screens emit tiny amounts of X-rays, but this is
much less than the background level naturally present in the envi-
ronment. ‘

o Computer screens emit some ultraviolet (UV) light, but ordinary
sunlight contains much more.

« ELF (extremely-low-frequency) radiation from computer
screens (video display terminals, VDTs) consists of a weak oscil-
lating magnetic field. This is not “‘radiation’” in the usual sense of
the word. Very strong ELF fields appear to have produced birth
defects in animals, but this has not been confirmed.
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Key 80 Effect of computers on society

OVERVIEW Almost all the effects of computers on soci-
ety have been unexpected or contrary to predictions. Com-
puters have not produced mass unemployment, dictatorial
control, or other predicted problems.

Employment: Computers have not put people out of work as some
people predicted. Instead, computers make the same workers more
productive. Industry adopts computers to raise production, not to get
rid of employees. Computers themselves have created a tremendous
number of new jobs.

Changes: Computerization does require changes in the nature of the
work. Sales clerks now type numbers on keyboards instead of count-
ing coins in metal boxes. Compare computers to automobiles.
Nobody claims the automobile has created mass unemployment, but
few people nowadays drive nails into horses’ hooves.

Education: Computers do not require all workers to be highly edu-
cated. There is a big difference between using a computer and pro-
gramming one. A hotel clerk who uses a computer to reserve rooms

does not need any more education than a hotel clerk who does things
the old way.

Politics: Computers have not led to central control of society. Thirty
years ago, experts foresaw a world in which everyone would be high-
ly dependent on a few powerful central computers. This has not hap-
pened. Personal computers have become a powerful force for
democracy. Computers communicate through decentralized net-
works that no single person can control. The pro-democracy uprising
in China in 1989 was made possible partly by information traveling
on computer networks, thereby avoiding government censorship.

Remaining problems

Misconceptions: One continuing problem is that people tend to think
everything that a computer says must be true.

* In the 1960s, many of us heard our creditors say, “According to
our computer, you owe us money,” as if the computer were auto-
matically right.

In 1990, a Georgia driver is reported to have spent the night in jail
because a South Carolina computer, using a database from the
wrong year, said his license plate number belonged to a stolen car.
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Privacy: Another concern is misuse of personal data.
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People give lots of personal information to banks, creditors,
schools, etc., assuming the information will not travel very far.
Nowadays, almost all this information is in computers.

If all these databases were combined and cross-referenced auto-
matically, the information could be used in ways that the people
never foresaw when they gave it out. In effect, this would be an
invasion of privacy.

What’s worse, any false information in the database could haunt
people for a long time and be nearly impossible to correct.

algorithm

array

assembly
language

bit

bootstrapping
(booting)

bus

byte

compiler

CPU

data structures

diskette

GLOSSARY

A precise procedure for doing a computation. An
algorithm must say exactly what is to be done at each
step, and it must always finish after a finite number of
steps.

A data structure in which all elements are of the same
type and are identified by number (e.g., x[1],
X[2]) ... x[99]).

A programming language consisting of simple abbre-
viations for machine instructions (machine code).

The amount of information represented by a single
“On” or “of ,93 ‘&true)i Or “false,7l or L‘O?’ Or ‘61,1
signal.

Starting up a computer by running a program that
makes it load and run another program, ‘‘pulling
itself up by its bootstraps.’’

The system of parallel wires or connections that join
the CPU, memory, and other parts of a computer.

A group of eight bits; enough information to repre-
sent one printed character.

A program that automatically translates programs
from a language such as Pascal or C into machine
language so that the computer can run them.

The central processing unit of a computer, where all
computation is carried out.

Ways of arranging data in a computer program,
including arrays, records, and lists.

A disk (flexible or rigid) that can be removed easily
from the computer.
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fioppy disk

hard disk

heuristic

kilobyte (K)

list

load

machine
language
. {machine code)

mainframe

megabyte

memory

microcomputer

microprocessor
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A flexible disk that can be removed easily from the
computer. Floppy disks are now usually called dis-
kettes.

A disk drive permanently mounted in a machine.

A procedure that does not always solve a problem,
but usually produces the correct answer or a good
approximation quickly.

1024 bytes. (Not 1000, because 1024 = 210)

A data structure in which each element is stored with
a pointer to the next one. Elements can be inserted
into the list by rearranging pointers, without moving
the elements that are already there.

To copy a program from some other source into
memory, making it possible for the computer to run
the program.

The internal binary code that controls the CPU. Pro-
grams are normally written in other languages and
translated into machine language by a compiler.

1. The largest kind of computer, big enough to fill a
room or several rooms. 2. The main cabinet where
the CPU of a mainframe computer is housed.

1,048,576 bytes. (Not because

1,048,576 = 2%0)

1,000,000,

The part of a computer where information and pro-
grams are held while the program is actnally running.
The term ‘‘memory’’ includes RAM and ROM but
does not normally include disks or tapes.

A computer whose CPU is a microprocessor.

A CPU built on a single silicon chip (integrated cir-
cuit).

minicomputer

NP-complete

operating
system

pointer

RAM

record

ROM

semantics

supercomputer

syntax

variable

A computer whose CPU is larger than a microproces-
sor, but small enough to fit on one or two circuit
boards,

As difficult as any problem in the set NP, such as the
traveling salesman problem. NP-complete problems
require impossibly large amounts of computer time to
solve.

The program that controls the overall operation of a
computer and enables it to run other programs.

A variable that contains the location of another vari-
able.

Random-access memory; the type of memory in
which computers normally hold programs and data
while working on them.

A data structure in which elements can be of different
types are are identified by name (for example, stu-
dent.name, student.class, stu-
dent.average).

Read-only memory; memory containing important
programs (such as part of the operating system) per-
manently recorded.

The rules of a programming language (or a human
language) that specify what the words or symbols
mean.

A large computer that uses unconventional design to
obtain very high speed.

The rules of a programming language (or a human
language) that specify how symbols are put together.
For example, Pascal syntax requires semicolons be-
tween statements.

A named location in which a value can be stored,
such as X in the statement LET X=2.
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Acceptability, 87
Ada, 54-55
Address, 2, 8
Algol, 33
Algorithms:
data compression, 76-77
defined, 62
file structures, 72—73
lists and trees, 69-71
quicksort, 65-68
relational databases, 74—75
searching, 63
sorting, 64
theorem-proving, 114
Alpha-testing, 124
Arrays, 46-47
naming, 48
Artificial Intelligence (AI):
automated reasoning, 114
Can computers think?, 108-109
defined, 107
expert systems, 115
Lisp. 112
natural language processing, 116-117
neural networks, 119-120
problem solving by searching trees,
110-111
Prolog, 113
robotics and computer vision, 118
ASCII character set, 2, 6-7
Assemblers, 19
Assembly language, 19
Automata, 84
Automated reasoning, 114

Babbage bottleneck, 21
Backaches, 128
BASIC, 58

Batch processing, 33
Baud rate, 37
Beta-testing, 124
Bezier splines, 105
Big-O notation, 79
Binary numbers, 2, 5
Binary search, 63
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Binary tree, 63, 69-71
Bit, 2
Bitmaps, 104
BITNET, 39
Bit patterns, 5
Bits, 2
Block-structured IF, 45
Boolean algebra, 114
Bootstrapping (booting), 23, 24
Bottlenecks, 21
Bounce bar menu, 125
Box-drawing characters, 6
Breadth-first search, 110
Bresenham’s algorithms, 105
Bugs, 122
Bus, 2, 8-9
Bytes, 2

reading, 8

storing, 8

C, 4, 56-57
C++,57
Carriage control, 59
Chaining, 115
Characters, 2
Character sets, 6-7
Character strings, 43
Chinese room argument, 108
Chi-square test, 99
Church’s thesis, 82
CISC (Complex Instruction Set
Computer), 10

Classical logic, 114
Clock speed, 10
Clusters, 25
COBOL, 60-61
Combinations, 101
Combinatorial logic circuits, 13
Command languages, 125
Compiler, 20
Complexity theory:

defined, 78

orders of complexity, 79
Computability theory, 78
Computer architecture:

compilers and interpreters, 20
defined, 11
input and output from CPU, 17-18
logic circuits, 12, 14, 15
logic gates, 13, 16
machine and assembly language, 19
parallel computers, 22
vector supercomputers, 21
Computer arithmetic paradoxes, 87
Computer graphics:
basic graphics, 103-104
defined, 102
graphics programming, 105
image processing, 106
Computers:
bit patterns, 5
character sets, 67
CPU and bus, 8-9
CPU architectures, 10
how they work, 1-2
micros, minis, and mainframes, 4
parts of, 3
and society, 129-130
Computer science, defined, 1
Computer vision, 118
Context-free phrase-structure
grammars, 84
Control codes, 6
Controllers,"17
Conversion, 87
Coordinate transformation, 105
Copy protection, 127
Copyrights, 127
CPU (Central Processing Unit), 2, 13
architectures, 10
bus and, 89
input-output devices and, 17-18
Cubic spline interpolation, 92
Cylinder, 25

Data, 2
Database, 74
Data communication:
defined, 36
local area networking (LAN), 38
parallel and serial communication,
37
wide area networking (WAN), 39
Data compression, 76-77
Data structures, 4647
Data types, 4243

Decoders, 12, 15

Depth-first search, 110

Deviation, 98

Digttal computers, 3

Direct Memory Access (DMA), 17
Directories, 27

Diskettes, 25

Disks, 25-26

Distribution, 97

Documentation, 126

Draw programs, 104

Dynamically created variables, 50

EBCDIC character set, 6
Electronic mail, 39
ELF radiation, 128
Embedded systems, 55
Enumerated types, 48
Equation solving:
numerical, 88-89
symbolic, 90
Erasing file, 27
Escape characters, 76
Ethernet, 38
Exact quality, 87
Expert systems, 115
Exponent, 42
Eyestrain, 128

File name, 27
Files, 25, 27
indexed, 73
random-access, 72
sequential, 72
Finite-state grammars, 84
Flip-flop, (3, 16
Floating-point numbers, 42
Foreign language character sets, 6
Formal languages, 84-85
Formal logic, 12
Formatting, 25
Fortran, 59
Forwarding, 39
Four-bit adder, 13, 16
Fourier transform, 106
Full adder, 13, 16
Functional units, 8
Functions, 44

Game trees, 110-111
Gaussian distribution, 97
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Glossary, 131-133

Goal trees, 110-111

GO-TO-less programming, 45
Graphical operating systems, 34-35
Graphical user interface, 125
Graphics. See Computer graphics
Graphics programming, 105

Half adder, 13

Halting problem, 82-83

Hard disks, 25

Hardware, 3

Hashing, 63

Hayes compatible modems, 37
Head, 25

Health hazards, 128

Heuristic search, 110

Hex numbers, 5

High-level programming languages, 20
Huffman coding, 76
Hypercube architecture, 22
Hypotheses testing, 99

IBM PC, 4

character set, 6

operating system services, 28
Image processing, 106
Indexed files, 73
Input-output (I-O) devices, 3, 17-18
Insertion sort, 64
Instruction codes, 2
Instruction set, 10
Integers, 42
Integrated circuit (IC), 4
Integrated Services Digital Network

(ISDN), 37

Interactive computing, 58
Internet, 39
Interpolation, 91-92
Interpreter, 20
Interrupts, 19, 28
Interval-halving search, 63
ISO standard Pascal, 53

Keystrokes, 125
Knowledge engineering, 115

Lagrangian interpofation, 91-92
LAN (Local Area Network), 38
Linguistic analysts, 116-117
Linked lists, 69, 71
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Lisp, 44, 112

Lists, 69-71

Local contrast enhancement, 106
Logic, 114

Logic circuits, 12, 14, 15

Logic gates, 13, 16

Loops, 45

Machine language, 19
Mainframe computers, 4
Mantissa, 42
Mean, 98
Median, 98
Megahertz (MHz), 10
Memory, 3

virtual, 29
Memory-mapped I-O, 17
Menus, 34, 125
Microcomputers, 4
Microprocessor, 4
Microsoft BASIC, 58
Minicomputers, 4
Modems, 37
Modula-2, 54
Modularity, 44
Monte Carlo methods, 96
MS-DOS, 32
Multitasking. 29
MVS (Multiple Virtual Storage), 33

Natural Language Processing (NLP),
116117
Neural networks, 119-120
NES (Network File System), 38
Node, 39
Nonclassical logic, 114
Non-Gaussian distribution, 98
NOR gate, 12, 14
NOT gate, 12, 14
NP-completeness, 80-81
Numerical equation solving, 88-89
Numerical methods:
defined, 86
interpolation, 91-92
numerical equation solving, 88-89
paradoxes of computer arithmetic,
87
permutations and combinations, 100—
101
random numbers, 93-94
simulation, 95-96

statistics which summarize data, 97~
98

statistics which test hypotheses, 99

symbolic equation solving, 90

Object-oriented programming, 35, 49,
57

Octal numbers, 5

Operating systems:
bootstrapping, 24
defined, 23
disks, 25-26
files, 27
graphical operating systems, 34-35
MS-DOS and 0S/2, 32
multitasking and virtual memory, 29
0S/360, MVS, and VM/CMS, 33
services, 28
UNIX, 30-31

Operations, 4243

08/2, 32

08/360, 33

Overflow, 13

Paint programs, 104

Palettes, 105

Paralle] communication, 37

Parallel computers, 22

Parity, 37

Pascal, 48, 53

Patents, 127

Pen plotters, 103

Permutations, 100-101

Pixels, 102, 103

Pointers, 50

Polymorphism, 49

Port addresses, 17

Power set, 101

Probabilities, finding by simulation,

95-96

Procedures, 44

Program, 1, 2
defined, 19
high-level languages, 20
machine and assembly language, 19
reliability of, 122
testing, 123-124

Programuming language design, 40
data structures, 4647
data types and operations, 42—43
object-oriented programming, 49

pointers and dynamic memory, 50—

structured programming, 45
subprograms and modularity, 44
syntax and semantics, 41
user-defined types, 48

Programming languages, 52
BASIC, 58
Cand C+ +, 56-57
COBOL, 60-61
Fortran, 59
Modula-2 and Ada, 54-55
Pascal, 53

Projection, 105

Prolog, 113

Protected mode, 32

Quicksort, 65~68

Radiation hazards, 128
RAM (Random-Access-Memory), 3
Random-access files, 72
Random numbers, 93-94
Raster graphics, 103
Ray tracing, 105
Real mode, 32
Records, 46

naming, 48
Recursion, 65, 70
Redirection, 31
Registers, 8, 10
Relational databases, 74-75
Repeat loop, 45
Reserved words, 41
Resolution, 103
Retrieval, 69
RISC (Reduced Instruction Set

Computer), 10

Robotics, 118
ROM (Read-Only-Memory), 3
Rounding error, 87
RS-232 serial communication, 37
Run-length encoding, 76

Sample, 98

Scan conversion, 105

Scientific notation, 42

Searching, 63

Searching trees, 110-1f1

Secant method, numerical equation
solving, 88-89
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Sectors, 25
Selection sort, 64
Semantics, 41
Semicolons, 55, 56
Sequentia] files, 72
Sequential logic circuits, 13
Sequential search, 63
Serial cornmunication, 37
Server, 38
Shareware, 127
Shells, 31
Significance, 99
Significant digits, 87
Simulation, 95-96
SNOBOL, 43
Software, 3
licensing of, 127
reliability of, 122
Sorting, 64
Spline curves, 105
Standard deviation, 98
Staterents, 42
Statistics:
data summary, 97-98
hypotheses testing, 99
Structured programming, 45

Structured Query Language (SQL), 75

Subdirectories, 27
Subprograms, 44
Subranges, 48
-Subroutine calls, 19, 28
Subscript, 46

Subsets, 101

Subtypes, 49
Supermicros, 4

Symbolic equation solving, 90

Symbolic expressions, 43
Syntax, 41

Tapes, 25
Target, 63
TCP/IP, 38

Terminal emulation software, 37

Terminals, 4, 37

Testing, programs, 123-124
Thrashing, 29
Timesharing, 29, 33
Token-ring network, 38
Topology, LAN, 38

Tracks, 25

Transistors, 12, 14
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Traveling salesman problern,' 80-81

Trees, 69-71

Truth-preserving inference, 114
Truth tables, 12

t test, 99

Tuples, 74

Turbo Pascal, 53

Turing machines, 8§2-83
Turing test, 108

Turtle graphics, 104

UCSD Pascal, 53
Unerasing file, 27
Unguessable numbers, 93
UNIX, 30-31, 56-57
Usenet, 39

User-defined types, 48
User interfaces, 34, 125

Variables, 42

Variance, 98

Vector graphics, 103

Vector supercomputers, 21
Virtual memory, 29
VM/CMS, 33

Von Neumann archjtecture, 3
Von Neumann bottleneck, 21

WAN (Wide Area Network), 39
White loop, 45

Wild cards, 32

Windows, 32, 34

Words, 8

Working conditions, 128
Workstations, 4
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