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Preface

Natural language processing (NLP) presents a serious problem to the would-be student:
there is no good way to get into it. Most of the literature presumes extensive knowledge
of both linguistics and computer programming, but few people have expertise in both
fields. ,

This book is designed to fill the gap. It is meant for computer science students and
working programmers who know Prolog reasonably well but have little or no background
in linguistics. I wrote it for my own course at the University of Georgia. Others will, T
hope, find it suitable for a one-semester undergraduate or graduate course.

Throughout the book, I assume that NLP is an area of applied linguistics. Thus an
important goal is to present lots of applicable linguistic theory. I also assume that NLP
is distinct from, though related to, knowledge representation. Both of these assumptions
contrast with older approaches, in which NLP was viewed primarily as a knowledge-
representation problem to which linguistic theory was only marginally relevant.

Judge this book by what it contains, not by what it leaves out. This is first and
foremost a book of fechniques. It must necessarily concentrate on problems for which
there are widely accepted solutions that lend themselves to implementation in Prolog. It
is not a comprehensive handbook of NLP. Nonetheless, I have covered a wider range of
topics than is usual in books on NLP in Prolog.

- In a one-semester course it is not necessary to cover the whole book. The core
of the material is in Chapters 1, 2, and 3, after which one can proceed to any of the

XV
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CHAPTER 1

Natural Language

1.1 WHAT IS NLP?

Natural language processing (NLP) is the use of computers to understand human (natural)
languages such as English, French, or Japanese. By “understand” we do not mean that
the computer has humanlike thoughts, feelings, and knowledge. We mean only that the
computer can recognize and use information expressed in a human language. Some
practical applications for NLP include the following:

e English as a command language—that is, the use of human languages in place of
the artificial languages presently used to give commands to computers.

e Databases and computer help systems that accept questions in English.

e Automatic translation of scientific and technical material and simple business com-
munications from one human language to another.

e Automatic construction of databases from texts of a technical nature, such as equip-
ment trouble reports or medical case reports.

All of these applications already exist in prototype form. Some of them are in commercial
use—for example, a computer program regularly translates weather reports from English
into French in Canada (Thouin 1982).
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These applications are successful because they don’t require the computer to know
much about the real world. Database programs simply use English to represent infor-
mation they would otherwise represent in some other form. Translation programs take
advantage of the fact that technical texts seldom refer to anything outside a well-defined
area of knowledge. It would be much harder to get computers to understand poetry, fic-
tion, or humor, because understanding these kinds of material requires extensive human
experience and knowledge of the real world.

Successful NLP, then, depends on putting limits on the need for outside knowledge
and human experience. It also depends on two other things.

First, NLP depends on cheap computer power. Here the advent of powerful micro-
computers in the 1980s has made a big difference. Previously, NLP was so expensive
that people would accept only perfect results, which were never achieved. That situa-
tion has changed. Machine translation, for instance, is making a comeback. Imperfect
translations may not be worth $1000 a page, but if they can be had for 10 cents a page,
people will find plenty of uses for them.

Second, and even more important, NLP depends on exact knowledge of how human
languages work—and right now we don’t know enough. Until recently, languages were
studied almost exclusively for the purpose of teaching them to other human beings. The
principles that underlie all human languages were (rightly, for the purpose) ignored. The
science of linguistics is only a few decades old, and there is still no consensus about some
of the most basic facts. This sometimes comes as a shock to computer programmers who
expect complete descriptions of human languages to be available off-the-shelf.

This chapter will survey the scientific study of human language, with an emphasis
on basic concepts and terminology that will be used in subsequent chapters.

Exercise 1.1.0.1

List several reasons why weather reports are especially easy for computers to process.

Exercise 1.1.0.2

Give an example of an ordinary English sentence whose meaning is quite unclear in isolation,
but perfectly clear when heard in the appropriate context.

Exercise 1.1.0.3 (for discussion)

Under what circumstances would you be willing to use an imperfect, machine-generated
translation of a foreign-language paper or document? Under what circumstances would it
be dangerous to do s0?

1.2 LANGUAGE FROM A SCIENTIFIC VIEWPOINT

On many points linguists do agree. Here are some of the most important.

First, LANGUAGE IS FORM, NOT SUBSTANCE. That is, a language is not a set of utter-
ances or behaviors—it is the underlying system of rules (regularities) that the behaviors
follow.
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Another way to say this is to distinguish between the speaker’s COMPETENCE (the
system) and his or her PERFORMANCE (the observable behavior). This distinction rec-
ognizes that accidental mispronunciations, interrupted sentences, and the like, are not
really instances of the language that the person is speaking; instead, they are deviations
from it.

Second, language is ARBITRARY. A language is a set of symbols which people agree
to use in specific ways. There is no deep reason why the word for ‘chair’ should be chair
in English, chaise in French, Stuhl in German, and so forth. These words just happen
to have these meanings. If you decided you wanted to call a chair a table, this would
be “wrong” only in the sense that you would not be cooperating with other speakers of
English.

Third, language is DISCRETE (digital), not continuous (analog). That is, languages
rely on symbols that are sharply distinct, not positions on a continuum. For example, if
you make a sound that is physically between a and e, speakers of English will hear it
as either a or e, or else they will ask you which sound you meant. They will take it for
granted you meant one sound or the other.

Similarly, if you see a color intermediate between red and orange, you can call it
red or you can call it orange, or you can even use both words in some combination, but
you cannot normally make up a word whose pronunciation is a physical mixture of the
pronunciations red and orange. You have to choose one or the other.

Fourth, all human languages use DUALITY OF PATTERNING, in which words are
strings of sounds, and utterances are strings of words. The words have meaning; the
sounds, by themselves, do not. A complex word such as dogcatcher can be divided into
meaningful units such as dog, catch, and er, but each of these is a string of smaller units
that have no meaning.

Fifth, ALL LANGUAGES ARE ABOUT EQUALLY COMPLICATED, except for size of vo-
cabulary. Primitive cultures do not have simpler languages, nor are ancient languages
simpler than modern ones.

Languages change constantly, but each change is a trade-off. Simplifying the
sound system may complicate the system of verb forms, or vice versa. Often, a language
evolves in a particular direction for thousands of years; for example, the languages de-
scended from Latin have gradually lost the noun-case system. But other languages, such
as Finnish, are evolving in the opposite direction; the noun cases of Finnish are getting
more complex. There are no simple ways to predict what the languages of the future
will be like.

Sixth, EVERYONE SPEAKS HIS OR HER OWN LANGUAGE. My English is not entirely
the same as your English, though it is probably very close. Because of the way language
is learned, slight differences between individuals, and large differences between societal
groups, are inevitable.

This point is worth emphasizing, because some people think that only the most
prestigious, educated dialect of a language is “real” and that people who speak other
dialects simply can’t talk (or even think) very well. The truth is that every variety
of a language has definite rules of grammar, but the rules vary from dialect to di-
alect.
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Exercise 1.2.0.1

Does tone of voice in English follow the principle of discreteness? Explain and cite evidence
for your conclusion.

Exercise 1.2.0.2

Suppose someone claims that there is no duality of patterning in the Chinese language
because the written symbols stand for whole words. How would you answer this claim?

Exercise 1.2.0.3

The sounds of w and wh have become the same in English as spoken in England and most
of the United States; they remain distinct in Scotland and the Deep South.

On the whole, does this change simplify the language or complicate it? In what ways
does it make English easier to speak or understand? In what ways does it make it harder?
Point out a pair of words that have become harder to distinguish as a result of this sound
change.

1.3 LANGUAGE AND THE BRAIN

Speaking languages is a distinctively human activity. So is playing checkers. Why, then,
is there a science of linguistics but not a science of checkerology?

The answer is that there is good evidence that the human brain is specially struc-
tured for language, but not for checkers. When people play checkers they are merely
using mental abilities that they also use for many other purposes, but this is not the case
with language.

The evidence comes from two main sources. The first is the study of brain injuries.
There are specific areas of the brain’ which, when injured, impair a person’s use of
language in specific ways. Damage to one area affects the ability to construct sentences;
damage to another area affects word recognition; and so forth. To a surprising extent,
corresponding parts of the brain have corresponding functions in all individuals. By
contrast, there is of course no specific area of the brain devoted to checker-playing, and
brain injuries that stop a person from playing checkers while leaving the rest of his or
her mental abilities intact are rare or nonexistent.

The second kind of evidence comes from language acquisition. All children learn
the language of the people around them, whether or not anyone makes any effort to teach
them how to talk. This learning takes place in definite stages and is quite independent
of the general intelligence of the child; even mentally retarded children learn exactly the
language to which they are exposed, though they learn it more slowly. It appears, then,
that acquiring a native language is like learning to walk—it is a matter of activating
structures in the brain that are pre-programmed for the purpose, rather than learning
information from scratch. Cook (1988, ch. 3) discusses this issue in detail.

Exercise 1.3.0.1 (for discussion)

All known languages have duality of patterning (defined in Section 1.2). Does this fact
constitute evidence that the brain is pre-programmed for language? Why or why not?
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1.4 LEVELS OF LINGUISTIC ANALYSIS

The structure of any human language divides up naturally into five levels: PHONOLOGY
(sound), MORPHOLOGY (word formation), SYNTAX (sentence structure), SEMANTICS (mean-
ing), and PRAGMATICS (use of language in context). The levels do, of course, interact to
some extent. This section will survey the five levels and define many commonly used
terms.

1.4.1 Phonology

Phonology is the study of how sounds are used in language. Every language has an “al-
phabet” of sounds that it distinguishes; these are called its PHONEMES, and each phoneme
has one or more physical realizations called ALLoPHONES.! Consider for example the ?
sounds in the words top and stop. They are physically different; one of them is accompa-
nied by a puff of air and the other isn’t. (Pronounce both words with your hand in front

- of your mouth to see which i1s which.) Yet in English these two sounds are allophones
of the same phoneme, because the language does not distinguish them. Other languages,
such as Hindi, make a distinction between these two sounds.

From the NLP point of view, the main challenge in phonology is that sound waves
are continuous but phonemes are discrete. In order to understand speech, a computer
must segment the continuous stream of speech into discrete sounds, then classify each
sound as a particular phoneme. This is a complicated problem in pattern recognition.

One difficulty is that consecutive sounds overlap. In the word man, the a and the
n are almost completely simultaneous. (A pure a followed by a pure n would sound
unnatural.) In the word bit, the b and the ¢ are almost completely silent; they are
recognized by their effect on the i between them. The influence of adjacent sounds on
each other is called COARTICULATION.

Another difficulty is that speech varies from one person to another and even from
occasion to occasion with the same speaker. Some New Yorkers pronounce pat exactly
the way some Texans pronounce pet. This is one of the reasons speech-recognition
systems have to be “trained” for the speech of a particular person. ‘

SPEECH SYNTHESIS, the creation of speech by computer, is considerably easier than
speech recognition. A synthesizer’s most important task is to simulate coarticulation.
This is usually done by providing several allophones for each phoneme, each to be used
when a different kind of phoneme is adjacent. Recognizable speech has been generated
by this method since the 1960s.

The hardest part of speech synthesis is INTONATION (tone of voice). The buzzing,
robotlike sound of cheap synthesizers is due to the fact that they have no intonation;
the voice always stays at the same pitch. More sophisticated synthesizers try to model
realistic intonation. The best synthesized English that I have heard sounded quite lifelike;

'Halle (1959) showed that classical phonemic theory misses some generalizations, and more modern
theories of phonology do not refer to phonemes as such. But the classical phoneme remains a useful working
approximation, particularly for speech synthesis.
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it sounded like a person who had a cold (because the nasal sounds were not quite
perfect) and a slight Swedish accent (because the intonation was not quite right, either).
Algorithms are being developed that calculate intonation from sentence structure.

Technologically, computer speech is quite separate from the rest of natural language
processing, and this book will not treat it further. [For the basics see Denes and Pinson
(1963), which is much more relevant than the date suggests; then, for in-depth technical
coverage, see O’Shaughnessy (1987).] Computer speech relies heavily on waveform
analysis and pattern recognition, while computational morphology, syntax, semantics,
and pragmatics rely on symbolic programming and automated reasoning.

Exercise 1.4.1.1

People whose native language is Spanish often have trouble distinguishing the sounds of b
and v in English. What does this tell you about the phonemes of Spanish?

Exercise 1.4.1.2

Would a speech synthesizer designed for English be able to speak French or Chinese?
Explain.

1.4.2 Morphology

Morphology is word formation. Every language has two kinds of word formation proc-
€sses: INFLECTION, which provides the various forms of any single word (such as singular
man and plural men, present runs and past ran), and DERIVATION, which creates new
words from old ones. For example, the creation of dogcatcher from dog, catch, and —er
is a derivational process.

Unfortunately, the distinction between inflection and derivation is often unclear;
we don’t know precisely what we mean by “different words” versus “different forms of
the same word.”

One guideline is that only derivation, not inflection, can introduce an unpredictable
change of meaning. That is, derivation produces words which are listed separately
in a speaker’s mental dictionary (LEXICON) and can thus have meanings that are not
predictable from their parts.

Consider dogcatcher. You may know what dog and catch mean, but this does not
tell you that a dogcatcher is a public official rather than, say, a machine or a trained
tiger. The word dogcatcher means more than just “something that catches dogs.” Thus
we know that it is created derivationally.

Another guideline is that derived forms are often missing—that is, you have to
learn whether or not a derived form actually exists—while inflected forms are almost
never missing (nonexistent). Every English verb has a past tense; that’s inflection.
Some adjectives form nouns ending with ity (such as divine : divinity); others don’t, and
there’s no way to predict in advance whether any particular adjective will take izy; that’s
derivation.

But the catch is that derivation can be almost as regular as inflection. The English
suffix ness behaves very regularly, forming nouns from practically all adjectives, such
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sentence —  noun phrase + verb phrase
noun phrase —  determiner + noun
verb phrase  —  verb + noun phrase
determiner ->  the
determiner — a
noun — dog
noun > cat
verb —  chased
verb —  saw

generate a number of senterices, among them this one:

sentence
A
noun phrase verb phrase
/\
determiner noun verb noun phrase
/\
determiner noun
| |
the dog saw the cat

Rules of this type have become standard not only in linguistics, but also in computer
science and especially in compiler development. Crucially, a finite set of rules can
describe an infinite number of sentences. We will return to this point in Chapters 3
and 4.

Recognition of sentence structure by computer is called PARSING. To parse a
sentence the computer must match it up with the rules that generate it. This can be done
either TOP-DOWN or BOTTOM-UP. A top-down parser starts by looking for a sentence,
then looks at the rules to see what a sentence can consist of, A bottom-up parser starts
by looking at the string of words, then looks at the rules to see how the words can
be grouped together. The best parsers use a combination of the two approaches (see
Chapter 6).

Parsing of English has been studied extensively, and some NLP researchers consider
it practically a solved problem. The issue today is what is the best way of parsing English,
not whether there is a way. Parsing of other languages has not been investigated as
thoroughly; most present-day parsing techniques rely on fixed word order and do not
work well for languages in which word order is highly variable, such as Latin, Russian,
or Finnish.

Exercise 1.4.3.1

Use the rules above to generate two more sentences, and draw tree diagrams of their struc-
tures.
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1.4.4 Semantics

Semantics, or meaning, is the level at which language makes contact with the real world.
As a field of study, semantics has only recently started to mature. For a long time it
was unclear how to describe the meanings of natural-language utterances. Suitable tools
have now been provided by mathematical logic and set theory, and since 1970 the study
of semantics has made great strides.

The distinction between SENSE (meaning) and REFERENCE is basic. In the sentence

The president said he hated broccolli.

the word president MEANS ‘chief executive of the United States’ but REFERs to George
Bush. Clearly, president could refer to someone else—whoever happened to be president
at the time. The sense of a word determines what it can refer to; anything that we call
president has to be a chief executive, unless we change the meaning of the word.

There are many different kinds of reference. In a sentence like The lion is the king
of beasts, the word lion refers to a species, not an individual lion. Reference was studied
extensively by medieval logicians (who called it suppositio), and their classifications are
still sometimes used. '

Multiple kinds of reference are particularly a problem with plurals. If I say the
students are wearing sweaters 1 mean that each student individually is wearing a sweater,
but if I say the students are numerous 1 do not mean that each student is numerous—I
mean that the ser of students is large.

Many words are AMBIGUOUS, i.e., they have more than one meaning. Consider pen
in the sentence There is ink in the pen versus There are pigs in the pen. Or think of how
many things pipe can mean—anything from a flute to a piece of plumbing. Some of the
meanings of pipe are connected in understandable ways, and some are not. The point
is that they are distinct, and in a particular context, the hearer must pick out the right
sense for the word, a process called WORD-SENSE DISAMBIGUATION. Human beings are
very good at this, but good computer techniques have not yet been developed.

Sentences can be ambiguous, too, either because words within them are ambiguous,
or because the sentence has more than one possible structure. A famous example is [/
saw the boy with the telescope, in which with the telescope modifies either the boy or
saw—it says either which boy I saw, or how I saw him.

SEMANTIC COMPOSITION is the combining of meanings of words to form the mean-
ings of phrases and sentences. Clearly the meaning of John loves Mary is a combination,
somehow, of the meanings of John, loves, and Mary. Just as clearly, however, the
meanings are not just piled together in a structureless way; if they were, John loves
Mary would mean the same thing as Mary loves John, and it doesn’t.

One way to account for semantic composition is to represent meanings as logical
formulas. Some examples:

loves (john, mary) ‘John loves Mary’
(Vx)crow (x) — black(x) ‘All crows are black’
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LamBDA NOTATION, which we will meet in Chapter 2, provides a way to encode formulas
with information missing, thus:

(Ax)loves (x, mary)  ‘loves Mary’
(Ay)(Ax)loves(x,y) ‘loves’

This gives us representations for the meanings of words and phrases as well as whole
sentences. We will explore this more fully in Chapter 7.

Iproms are phrases whose meaning is not predictable from the meanings of the
parts. A classic example is kick the bucket, which means ‘die’. The meanings of idioms
are said to be NONCOMPOSITIONAL; idioms have to be listed in the lexicon.

Exercise 1.4.4.1

Each of the following sentences is ambiguous. Identify two distinct meanings for each
sentence, and say whether the ambiguity is caused by ambiguous words, ambiguous structure,
or both.

1. Students may come into the room.
2. I'need to ask for books in Spanish.
3. Flying planes can be dangerous.
4. I detest visiting relatives.

1.4.5 Pragmatics

Pragmatics is the use of language in context. The boundary between semantics and
pragmatics is uncertain, and different. authors use the terms somewhat differently. In
general, pragmatics includes aspects of communication that go beyond the literal truth
conditions of each sentence.

Suppose, for example, that while lecturing, I look at a student sitting next to the
open door of the classroom and ask, Can you close the door? If she just answers Yes
she’s missed the point. My question was implicitly a request. Without knowing the
pragmatics of English a person (or a computer) would fail to realize this. Whereas
syntax and semantics study sentences, pragmatics studies SPEECH ACTS and the situations
in which language is used.

An important concept in pragmatics is IMPLICATURE. The implicature of a sentence
comprises information that is not part of its meaning, but would nonetheless be inferred
by a reasonable hearer. In the example just mentioned, Can you open the door? is, by
implicature, a polite request, not just a question; if it were only a question there would
be little reason for asking it.

Or suppose that I say:

I have two children.

If I have only one child, or none, this is false. If I have three children, my statement
is true but (in most contexts) MISLEADING, because it leads a reasonable hearer to infer.
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that I have only two. False meanings make a sentence false; false implicatures merely
make it misleading.

Unlike the meaning of a sentence, the implicature can be cancelled. Consider the
dialogue:

If you have at least two children you’re exempt from military service.

On what ground do you claim exemption?
I have two children.

This is both true and appropriate, in context, when spoken by a father of three.

Implicature was first studied by Grice (1975), who identified a number of MAXIMS
(principles) which people follow when making statements, such as “Be relevant” and
“Make the strongest statement that is true” (avoid misleading understatements; don’t say
the temperature is “above freezing” if it is in fact 90°).

Another concern of pragmatics is PRESUPPOSITION. The presuppositions of a state-
ment are the things that must be true in order for the statement to be either true or false.?
For example, both The present king of France is bald and The present king of France is
not bald presuppose that there is indeed a king of France. If there is no such king, these
sentences are neither true nor false.

Like implicatures, presuppositions can be CANCELLED. The basic meaning of a
sentence, however, cannot be cancelled. 1 can say The present king of France is not
bald because there is no king of France, explicitly doing away with the presupposition
that such a king exists. Similarly, I can say [ have two children; in fact I have three,
cancelling the implicature that I have only two. But if I try to cancel the basic meaning
of a sentence, I contradict myself. English does not allow people to say I have two
children; in fact I have only one.

Pragmatics also includes the study of DISCOURSE (the way sentences connect to-
gether to convey information). Discourse structure is especially important when com-
puters generate natural language text. A human being might say, “The employee with
the highest salary is Joe Smith, the CEO.” A computer retrieving the same information
from a database might construct a boring, wordy monologue such as, “The maximum
salary is the salary of Smith. The first name of Smith is Joe. The title of Smith is CEQ.”
Obviously this is not satisfactory. An important but largely unexplored question is how
to make computers organize discourse the same way people do.

Exercise 1.4.5.1

Distinguish between the basic meaning and the implicature of each of the following utter-
ances. Show how each implicature can be cancelled.

1. Parent to child: It’s bedtime.

This is one of several rival definitions; the exact nature of presupposition is still an open question.
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2. Some of the students passed the course.
3. It’s hot today—the temperature is over 90°.

1.5 WHY USE PROLOG?

Of all the programming languages available today, Prolog may be the most suitable for
natural language processing. Here are some reasons.

e Large, complex data structures are easy to build and modify. This makes it easy
to represent syntactic and semantic structures, lexical entries, and the like.

o The program can examine and modify itself. This allows use of very abstract
programming methods.

e Prolog is designed for knowledge representation and is built around a subset of
first-order logic; extensions to this logic are relatively easy to implement.

e A search algorithm, depth-first search, is built into Prolog and is easily used in
all kinds of parsers. In fact Prolog also has a built-in, ready-to-use parser (see
Chapter 3).

o Unification (pattern matching) is built into Prolog and can be used to build data
structures step-by-step in such a way that the order of the steps does not matter.

Lisp shares only the first two of these advantages. Conventional languages such as
Pascal and C lack all of them. Of course natural language processing can be done in
any programming langnage, but some languages are much easier to use than others.

1.6 FURTHER READING

Readers who have not studied linguistics would do well to read Fromkin and Rodman
(1988) or Akmajian, Demers, Farmer, and Harnish (1990) for general background. Two
comprehensive handbooks are The Cambridge Encyclopedia of Language (Crystal 1987)
for nonspecialists, and Linguistics: The Cambridge Survey (Newmeyer 1988) for in-depth
coverage.

Newmeyer (1983, 1986) surveys modern linguistic theory. The first of these is an
especially good explanation of the goals of theoretical linguistics (and, implicitly, why
theoretical linguists do not produce the ready-to-use descriptions that NLP implementors
want). The second traces the development of syntactic theory since 1957. For extensive
(but far from complete) accounts of the syntax of English see Radford (1988) and Gazdar
et al. (1985). On lexical semantics see Palmer (1981); on semantics and logic, Bach
(1989); and on pragmatics, Levinson (1983).

The best survey of natural language processing is Allen (1987), which uses Lisp
for examples of implementation. Moyne (1985) is also useful. Smith (1991) gives an
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especially wide-ranging survey of computers and natural language, including not only
NLP, but also text statistics, speech synthesis, and related fields. Winograd (1983) gives
an accessible but thorough survey of syntax from a computational point of view; the
second volume, to deal with semantics, has not yet been published. ‘Obermeier (1989)
surveys commercial applications of NLP,

The leading NLP journal is Computational Linguistics; relevant papers also appear
in Literary and Linguistic Computing and especially in the proceedings of the many As-
sociation for Computational Linguistics (ACL) and international COLING conferences.
Articles about practical natural-language user interfaces for software often appear in the
International Journal of Man—Machine Studies. Grosz et al. (1986) reprint a number of
classic NLP papers, and there are many relevant articles in the Encyclopedia of Artificial
Intelligence (Shapiro 1987). Gazdar et al. (1987) give a bibliography of more than 1700
NLP books and papers. ‘

On NLP in Prolog see Pereira and Shieber (1987); Gazdar and Mellish (1989, also
available in Lisp and Pop-11 editions); and Gal et al. (1991). '



CHAPTER 2

Templates and Keywords

2.1 TEMPLATE MATCHING
2.1.1 ELIZA

In 1950, Alan Turing proposed that a machine should be considered intelligent if a human
being, communicating with it by teletype, could not distinguish it from another human
being. In 1966, Joseph Weizenbaum published a computer program called ELIZA that
seemed to pass Turing’s test (admittedly with a different kind of conversation than Turing
envisioned) but obviously did not contain humanlike intelligence.

ELIZA carried on a dialogue with its user, in English, in the manner of a psycho-
logical counselor. Figure 2.1 shows a typical dialogue (from Weizenbaum 1966). ELIZA
was so convincing that people willingly told it their troubles and asked Weizenbaum to
g0 away so they could converse in private. Psychiatrists even thought it was a practical
way of administering therapy. Weizenbaum was alarmed at this; far from a triumph of
artificial intelligence, he considered ELIZA to be evidence of how easy it is to deceive
people with computers.

After all, ELIZA did not “understand” much of its input, if “understanding” means
responding to the information content. ELIZA merely recognized certain patterns of
words and gave appropriate “canned” responses. For example, if the user typed You are
X, ELIZA could respond What makes you think I am X, where X is any adjective. Any

14
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Men are all alike.

IN WHAT WAY

They're always bugging us about something or other.

CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

It’s true. I am unhappy.

DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

I need some help, that much seems certain.

WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.

TELL ME MORE ABOUT YOUR FAMILY

My mother takes care of me.

WHO ELSE IN YOUR FAMILY TAKES CARE OF YOU

My father.

YOUR FATHER

You are like my father in some ways.

WHAT RESEMBLANCE DO YOU SEE .

You are not very aggressive but ‘I think vou don’t want me to
notice that.

WHAT MAKES YOU THINK I AM NOT VERY AGGRESSIVE

You don’t argue with me.

WHY DO YOU THINK I DON'T ARGUE WITH YOU

You are afraid of me.

DOES IT PLEASE YOU TO BELIEVE I AM AFRATD OF YOU

My father is afraid of everybody.

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.

DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR
BOYFRIEND MADE YOU COME HERE

Figure 2.1 A sample session with ELIZA. The machine’s responses are in upper case.

sentence containing words like mother would get a reply such as Tell me more about
your family. And a sentence containing nothing that ELIZA recognized would evoke a
response such as Tell me more or Go on.

Exercise 2.1.1.1

If your computer has the Gnu Emacs editor, you can play with a somewhat updated version
of ELIZA. Simply get into Emacs and type: Esc x doctor Return.

2.1.2 Other Template Systems

ELIZA was an example of a TEMPLATE SYSTEM O PATTERN-MATCHING SYSTEM, a tech-
nology that is still useful today. (A TEMPLATE is a pattern such as 7/ am X.) What
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ELIZA proved is that templates are powerful enough for quite realistic natural-language
dialogue.

Several other classic Al programs used templates. One of these was SIR (Semantic
Information Retrieval) by Bertram Raphael (1968). SIR could do enough logical rea-
soning to answer questions such as, “Every person has two hands. Every hand has two
fingers. Joe is a person. How many fingers does Joe have?”

Another was Bobrow’s STUDENT, which could solve high-school-level mathe-
matical problems stated in English. A noteworthy feature of STUDENT is that it used
recursive templates. For example, the template if X then Y allowed whole sentences in
place of X and Y and would apply whole-sentence templates to them. Bobrow (1968)
describes the original system and Norvig (1991) reimplements it in Common Lisp.

SIR, STUDENT, and their kin were developed mainly to study the information
content of natural language, not to model the syntax. Nobody claims that templates are
a realistic model of the way the human mind processes language. They are, however,
a quick way to extract useful information from natural-language input, adequate for
many practical user-interface applications. One modern example is HAL, the English-
language command interface for the Lotus 1-2-3 spreadsheet program. Though its internal
workings have not been made public, HAL shows the rigidity of syntax that is typical
of a template system (see Petzold 1987). '

2.2 DOS COMMANDS IN ENGLISH
2.2.1 Recipe for a Template System

In this section we will develop a template system that lets the user type commands to
MS-DOS (PC-DOS) in English. The same could be done just as easily for UNIX or
another operating system. See Lane (1987) for a different DOS-in-English system written
in Turbo Prolog.

Like most template systems, ours will translate English into a formal language, in
this case DOS command language. The formal language has two important characteris-
tics:

o Itis much less expressive than English; many English words and expressions simply
cannot be translated into it.

o The human user knows about these restrictions on expressive power and can restrict
the English input accordingly. For example, people know that when talking to DOS,
it makes sense to say Show me the BAT files on drive D but not Look on my works,
ye mighty, and despair.

This means that the template system can get away with covering only a tiny part of the
English language.
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The first step in designing a template system is to write down a lot of sample input
sentences with the desired translations, then try to find patterns in them. For example:

What files are on drive B? = dir b:
Delete all my files. = erase *.x
Run the word processor. = wp

Figure 2.2 shows a larger set.

At this stage you may well decide that DOS command language isn’t powerful
enough. For example, the user can’t say Erase all files older than 1/29/90 because there
is no DOS command corresponding to it; the erase command does not check the date of a
file. This is a separate issue from natural language processing; we’ll leave it behind, but
you have been warned. The success of any natural-language-driven software depends
on whether the software can do what the user wants, not just whether it understands
English. ’

The next step is to write a set of rules to do the translation. These will be of two
types:

e SIMPLIFICATION RULES discard unnecessary words and make equivalent words look
alike. For example, display might get rewritten as show, and the might get dropped
altogether.

e TRANSLATION RULES actually map a template into the formal language, such as
[show, files,on,disk,X] = [‘dir’',X, '’ 1.

What is on disk A? = dir a:
What is on the disk in drive A? = dir a:
What files are on disk A? = dir a:
What files are there on the disk in drive A? = dir a:
(Likewise for any drive.)
Are there any EXE files on disk A? = dir a:*.exe
Are there any EXE files on the disk in drive A? = dir a:*.exe
What EXE files are there on disk A? = dir a:*.exe
What EXE files are there on the disk in drive A? = dir a:*.exe
(Likewise for BAT files, COM files, etc.)
Copy everything from disk A to disk B. = copy a:*.* b:
Copy everything from (the disk in)

drive A to (the disk in) drive B. = Ccopy a:*.* b:
Copy (all) files from .. . (etc.) = copy a:*.* b:
Copy all BAT files from . .. (etc.) = copy a:*.bat b:

Figure 2.2 Some English sentences and their translations into DOS command language.
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Simplification rules (& denotes the empty string):

the = 0

is = 0
are = ¥
there = 0
any = ¢
disk in drive = drive
disk in = drive
disk = drive
what files = files
what = files
file = files
everything = all files
every = all

Translation rules:

Files on drive X? = dir X:

X files on drive Y? = dir Y:*.X
Copy all files from drive X to drive Y. = copy X:*.* Y:
Copy all X files from drive Y to drive Z. = copy Y:*.X Z:

Figure 2.3 Examples of simplification and translation rules.

The purpose of the simplification rules is to reduce the number of translation rules.
There’s a trade-off; if you put in too many simplification rules, you may lose distinctions
that you later on want to preserve. It’s common for some of the simplification rules to
get dropped as the system becomes more complete.

Figure 2.3 shows simplification and translation rules to handle the sentences in
Figure 2.2. Note that every sentence goes through all the simplification rules that match
any part of it, and then through one translation rule (the one that matches the whole
sentence).

What about sentences that the system can’t recognize? Some of these will be
typing errors and the like. Others will be reasonable sentences that you didn’t provide
for. The appropriate thing to do is store them on a file so that you can come back and
modify the system later to handle them.

Exercise 2.2.1.1

In addition to the examples in Figure 2.2, write down at least 20 more English sentences
and their translations into MS-DOS command language (or the command language of your
computer).
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Exercise 2.2.1.2

Write a set of simplification and translation rules (in any notation you care to use) to handle
those sentences. Notice that if you do this intelligently, your rules will also handle many
sentences that you didn’t originally think of.

2.2.2 Implementing Simplification Rules

Simplification rules use templates for parts of sentences. For example, the word every-
thing gets simplified to all files wherever it occurs, and the phrase what files is simplified
to files.

What we need is a way to match simplification rules to the input list. The match
can occur anywhere in the list. Accordingly, the program works through the list, word
by word, comparing it to all the templates at every point:

[copy, files, from,disk, in,drive,a,to,drive, b]  (No match)

[files, from,disk, in,drive,a,to,drive,b] (No match)

[from,disk, in,drive, a, to,drive,b] (No match)
[disk,in,drive,a,to,drive,b] (Matches ‘disk in’)

The next question is how to store the templates. Here open lists come in handy. It’s much
easier to match [disk, in,drive,a, to,drive,b] with [disk,in|X] than with
[disk, in]. The latter would require a special procedure to compare elements one by
one; the former can be done by ordinary Prolog unification. Here, then, are a set of
simplification rules expressed as open lists:

% sr(T1,T2)
% Simplification rules.

sr([thel|X],X).
sr([islX],X).
sr(larel|X],X).
sr([there|X],X).
sr{lany|X],X).
sr([disk,in,drivel|X], [drive|X]).
sr([disk,inl|X], [drivel|X]).
sr([disk|X], [drive|X]).

st ([what, files|X], [files|X]).
sr([what|X], [files|X]).
sr{[filelX], [files|X]).

sr ([everythingl|X], [all, files|X]).
sr([every|X], [all]X]).

That is: [the|X] simplifies to X; [disk,in|X] simplifies to [drive|X]; and so
on.

The order of the simplification rules matters because more than one rule can match
the same input. For example, disk in drive A matches both
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disk in drive = drive
and
disk = drive.

If both rules match, the first one should take precedence; thus it must be tried first.
Otherwise the result might be drive in drive A.

After one simplification rule works on the string, the result gets fed into the sim-
plification rules again. This makes it possible, for example, to simplify al! files to every
Jile and then change every file to everything. You can even get loops; a loop will happen
if there is a rule that changes every to all and also a rule that changes all to every. The
complete simplification routine looks like this: '

o

simplify (+List, -Result)
Applies simplification rules to List giving Result.

oe

o0

simplify (List,Result) :-
sr(List,NewlList),

!
.

simplify (NewList,Result).

A simp. rule matches

so apply it and then
try to further simplify
the result

o° o

oe

simplify ( [WIWords], [WINewWords]) :-
simplify (Words, NewWords) . '

ae

No simp. rule matches
so advance to next word

oe

o

simplify ([1,[1). No more words

Exercise 2.2.2.1

Using simplify/2 given above, implement all the simplification rules that you developed
in Exercise 2.2.1.2.

2.2.3 Implementing Translation Rules

Translation rules are relatively simple because each of them is supposed to match the
whole list of words:

% tr(?Input, ?Result)
% Translation rules.

tr([quit], [quit]).
tr([files,on,drive, X, ?’'], ['dir ',X,’:'1).
tr([X, files,on,drive,Y, 2’1, [’dir ',Y, " :*.’ ,X]).
tr([copy,all, files, from,drive,X,to,drive,Y,’."],

["copy ' ,X,":*.* 7, ¥,":']).
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The output of a translation rule is a list of atoms which, when converted back into
character strings and concatenated, will give the appropriate DOS command. (The first
of these rules handles the “quit” command that the user will use to exit from the program.)

The procedure that applies the translation rules will simply find a rule that applies
to the input, then execute a cut, or complain if no rule is applicable:

oe

translate(-Input, +Result)
Applies a translation rule, or complains
if no translation rule matches the input.

oe

oe

translate (Input,Result) :-

tr (Input, Result),
|

translate(_,[]) :-
write(’I do not understand.’),
nl.

Exercise 2.2.3.1

Implement all the translation rules that you developed in Exercise 2.2.1.2. Make sure these
fit together properly with the simplification rules that you have just implemented.

2.2.4 The Rest of the System

Once the translation rules have produced a command, the next step is to pass the command
to the operating system. How this is done depends on the exact version of Prolog.

The first step in ALS Prolog (which is typical) is to concatenate the atoms into a
character string, so that for example [‘dir ’,‘a:’] becomes "dir a:". This is
simple; just expand each atom into a list of characters, and append the lists:

make_string (+ListOfAtoms, -String)
Concatenates a list of atoms giving a string.
Example: ['a’,’'b’,’c’] gives "abc".

oe o0

a0

make_string([H|T],Result) :-
name (H, Hstring),
make_string (T, Tstring),
append (Hstring, Tstring, Result) .

make_string([1,[]).

% append(?Listl, ?List2, ?List3)
% Appending Listl to List2 gives List3.

append([HIT],L, [HIRest]) :- append(T,L,Rest).
append([],L,L) .
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The complete procedure to pass a command to DOS is:

oe

pass_to_os (+Command)
Accepts a command as a list of atoms, concatenates

e 0@

pass_to_os([guitl]l) :- 1I.
pass_to_os([]) :- !.

pass_to_os (Command) :-
make_string (Command, S),system(S) .

the atoms, and passes the command to the operating system.

Chap. 2

Notice that pass_to_os ignores [quit] (the quit command) and [] (the output of

an unrecognized command).’

Finally, we’re ready to define the main procedure of the template system.

Its pur-

pose is to accept sentences from the user and run them through simplify, translate,
and pass_to_os in succession. The main loop uses repeat so that execution will
continue even if the processing of any particular command fails. Here, then, is the main

procedure:

process_commands
Repeatedly accepts commands in English,
simplifies and translates them,
and passes them to the operating system.

P oo

a° oe

process_commands :-

repeat,
write (’Command: '),
read_atomics (Words), % defined in Appendix B

simplify (Words, SimplifiedWords),
translate (SimplifiedWords, Command),
pass_to_os (Command) ,

Command == [quit],

The template system is now complete.

IThe equivalent of make_string(Command,S), system(S) in some other Prologs is:

Arity Prolog: concat (Command,S), shell(S)
LPA (MS-DOS): make_string(Command,S), name(C,S), dos(C)
ESL Prolog-2: make_string (Command,S), 1ist(S,C), command(C,32000,display)

Quintus (UNIX): make_string(Command,S), name(C,S), unix(system(C))
Quintus (VMS): make_string (Command,S), name(C,S), vms(dcl(C))

Consult your manual for further guidance.
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Exercise 2.2.4.1

Find out how your Prolog passes commands to the operating system, and get pass_to_os
working. Verify that

?- pass_to_os([dir]).
(or the equivalent) works correctly.

Exercise 2.2.4.2

Modify pass_to_os so that it displays the command on the screen before passing it to
the operating system.

Exercise 2.2.4.3

Using your answers to several previous exercises, build a working, though small, template
system that translates English sentences into DOS commands.

Exercise 2.2.4.4

Modify your DOS-in-English system so that if the user types an unrecognized sentence, this
sentence is recorded in a file for you to see. (This will enable you to improve the system
later, to accommodate more of the sentences that users actually type.)

[Hint: Consult your Prolog manual to find out how to open a file in append mode
(i.e., open an already existing file so that you can write at the end).]

Exercise 2.2.4.5 (project)
Expand your DOS-in-English system so that it becomes a practical (if still modest) piece
of software. Modify it in any ways you can think of that will make it more useful. This
is a very open-ended project; depending on how much work you choose to do, it could be
anything from a weekend assignment to a Ph.D. thesis.

Exercise 2.2.4.6 (project)
ELIZA in Prolog. Implement a version of ELIZA. To do this, you will have to implement:

¢ A simplifier that can translate you to me and me to you without getting into a loop;

e A matching algorithm more powerful than ordinary Prolog unification, so that a
variable can match more than one word in a list (for example, [X, says, that, Y]
should match my mother says that airplanes are dangerous),

e A strategy for identifying the most important word in a sentence (for example, com-
puter is more important than mother, which is more important than why), so that
if more than one template matches the input, the template that recognizes the most
important word can be chosen;

o A way to give different responses to the same question at different times.

Weizenbaum (1966) gives a complete, though disorganized, set of simplification and trans-
lation rules for ELIZA; Norvig (1991) describes how to implement ELIZA in Lisp.
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Exercise 2.2.4.7 (project)

English grammar and style checking. Some commonly misused words and phrases can be
recognized by a template system. Examples:

o comprised of (standard English is composed of);

e inasmuch as, in point of fact, in the area of (these are grammatical but should usually
be replaced by clearer, more direct wordings such as because, in fact, or in);

e very (much overused; should often be deleted);

e does not only (a common mistake in the English of people whose native language is
German or Scandinavian).

Write a program that will read English documents (business letters, computer documentation,
etc.), and point out words and phrases such as these. '

2.3 KEYWORD ANALYSIS
2.3.1 A Time-Honored Approach

An alternative to template matching is KEYWORD ANALYSIS. Instead of matching the
whole sentence to a template, a keyword system looks for specific words in the sentence
and responds to each word in a specific way.

One of the first keyword systems was that of Blum (1966). Inspired by ELIZA,
Blum wrote a program to accept sentences such as

Copy 1 file from Ul to U2, binary, 556 bpi.

and convert them into commands for a program that managed magnetic tapes.

Though he took ELIZA as his model, Blum ended up using quite different tech-
niques. He distinguished three kinds of keywords: requests (list, copy, backspace, etc.),
“qualifiers” that further described the request, such as binary or blocked, and “quantifiers”
(numbers) such as 5 files or 556 bpi (= bits per inch). His program simply collected all
the requests, qualifiers, and quantifiers in the input and put them together into a properly
formed command, paying very little attention to the word order and completely ignoring
unrecognized words.

Keyword analysis has been reinvented several times, with slight variations, and
keyword systems have had a long and successful history. Unlike template systems,
they are not thrown off by slight variations of wording; unrecognized words are simply
skipped. Keyword systems are useful in any situation where the input is known to contain
certain kinds of information, and other information, if any, can be ignored.

Two prominent keyword systems today are AICorp’s Intellect and Symantec’s
Q&A; Obermeier (1989) lists many others. Both Q&A and Intellect are database query
systems and both work very much like the system to be developed later in this chapter.
Wallace (1984) describes a much more elaborate keyword system written in Prolog.
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2.3.2 Database Querying

In this section we will develop a keyword-analysis program to process database queries
that are expressed in English. Before doing this, however, we must say a few things

about databases.

Tables and tuples. A RELATIONAL DATABASE consists of one or more TABLES
such as the following:

| ID number J Name Birth date | Title \ Salary ’
1001 Doe, John P. 1947/01/30 | President 100000
1002 Smith, Mary J. | 1960/09/05 | Programmer | 30000

1003 Zimmer, Fred 1957/03/12 | Sales rep 45000

The database is a collection of Rows or RECORDS (lines), each divided into ATTRIBUTES
(FIELDS). Each attribute has a name. One specific field—in this case, the ID number—is
the KEY or IDENTIFIER; it is unique to each record and can be used to identify the record.

Formally, each record is a TUPLE '(an ordered set of a specific number of items),
a table is a set of tuples, and each table expresses a RELATION between the values in
its tuples. A true relational database can consist of many tables; a FLAT-FILE DATABASE,
which is less powerful, consists of one table only. For more on database theory, see
Date (1990).

Queries. The main function of a database is to answer QUERIES (requests for
information). Database manipulation has a semantics all its own; regardless of the
language used, the meanings of most queries will have the form

Do action A to all records that pass test T.

For example, if the query is

Show me all programmers with salaries over 25000.
then the action is display and the tests are Title = programmer, Salary > 25000.

Most large databases use STRUCTURED QUERY LANGUAGE (SQL) (pronounced “se-
quel”). In SQL the query just mentioned would be expressed as:

SELECT NAME, SALARY FROM TABLEL
WHERE SALARY > 25000

AND TITLE = ’'PROGRAMMER’

In this chapter, however, we will use a database consisting of Prolog facts and construct
queries in Prolog. The techniques are very much the same, and we avoid having to learn



26 Templates and Keywords Chap. 2

another language. Several Prolog implementations include the ability to access SQL
databases through Prolog queries.

2.3.3 A Database in Prolog

In order to experiment with natural-language access to databases, we need a database.

We will construct a simple database in Prolog, but it will be designed to act like a single

table rather than to use Prolog in the most effective way. In this respect the Prolog system

will act as if it were accessing a large database implemented in some other language.
First, the records themselves:

employee (1001, ‘Doe, John P.‘,[1947,01,30], 'President’,100000).
employee (1002, 'Smith, Mary J.',[1960,09,05], Programmer’,30000).
employee (1003, 'Zimmer, Fred’, [1957,3,12], 'Sales rep’,45000).

Next, predicates to retrieve the values of the individual attributes, given the key:

full_name (ID,N) :- employee(ID,N,_,_,_).
birth_date(ID,B) :- employee(ID, ,B,_ , ).
title(ID,T) :- employee(ID,_, ,T,_ ).
salary(ID,S) :- employee(ID,_,_,_,S).

Finally, predicates to do other things to the records—in this case, merely display
them and remove them:

display_record(ID) :-
employee (ID,N,B,T,S),
write([ID,N,B,T,S]),
nl.

remove_record(ID) :-
retract (employee(ID, _,_,_, )).

A fully functional database would also have a way to UPDATE (change) the attributes in
each record.
Exercise 2.3.3.1

Make up a tiny relational (not flat-file) database and implement it in Prolog clauses. Include
at least two tables and give an example of a query that does something useful by accessing
both tables. Indicate which attribute is the key in each table.

Exercise 2.3.3.2

What is the relationship between first-argument indexing (see Appendix A) and the concept
of a key in a database?
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2.3.4 Building a Keyword System

Keyword systems work well for database querying because each important concept as-
sociated with the database has a distinctive name. A keyword system responds only to
the words that identify fields, values, comparisons, and the like, and ignores all the other
words.

Like a template system, the keyword system can have simplify and translate
stages. However, the simplify stage is relatively unimportant and is often unneces-
sary. Its only function is to make synonymous words look alike. There is no need for
simplify to drop unnecessary words such as the, because translate will drop all
the words it does not recognize.

The translate stage does most of the work. The output of translate will
be a Prolog query that picks out the appropriate records and performs some action on
them. We want to act on all the records that pass the test, so we will attempt as many
alternative solutions to the query as possible.

The main procedure will therefore look something like this:

oP

process_qgueries
Accepts database queries from the keyboard and
executes all solutions to each query.

oe

oe

process_gueries :-
repeat,
write('Query: '),
read_atomics (Words),

% some systems would have a ’‘simplify’ stage here,
translate (Words, _, Query),

write (Query), nl, % for testing
do_all_solutions (Query),
Words == [quit],

oe

do_all_solutions (+Query)
Makes execution backtrack through all solutions to Query.

o

do_all_solutions (Query) :-
call (Query),
fail.

do_all_solutions(_).

The anonymous variable in the arguments of translate will be explained later.

Exercise 2.3.4.1

In process_queries, what should translate do with the quit command? (Don’t
Just say “it should ignore it”; be more specific.)
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Exercise 2.3.4.2

When process_queries terminates, does it succeed or fail?

2.3.5 Constructing a Query
From the keyword system’s point of view, there are only five kinds of words:

® ACTIONS such as display, erase, select, etc. (we may want to supply display as the
default action for queries that do not name an action);

® TESTS such as programmer, president, male, female, etc., each of which requires a
specific value in a specific attribute;

® COMPARISONS such as greater, over, under, etc., each of Wthh takes two arguments;

® ARGUMENTS of the comparisons, such as salary (which retrieves the value of a
field) and 25000 (which is a constant); and

¢ NOISE WORDS, i.e., unrecognized words which can be skipped.

The string of words must be translated into a Prolog query. This is done by working
through it, word by word, and adding something to the query for each meaningful
word. Assuming the input list is [show,programmer, salary, over, 2500017,
the process should go roughly as follows:

Word Query
show ..., display_record(X)
programmer title(X,programmer), ... display_record(X)

salary over 25000 title(X,programmer), salary(X,Y), 2=25000,
Y>Z, display_record(X)

Notice that the action goes at the end of the query because we don’t want it to be executed
until all the tests have been fulfilled. All the other tests, however, come at the beginning,
roughly in the order in which the human user gave them. Further, the comparison salary
over 25000 translates into three queries (or in any case two), not just one.

Moreover, the variable X, identifying the record to be retrieved, is shared by all
the goals in the query. Otherwise there would be nothing to make them all apply to the
same record.

We will put the query together by joining the goals with commas. Recall that if x,
v, and z are Prolog queries, then so is (x, v, z). The comma is an infix operator and
is right associative so that (x,v,z) = (x, (y,z)). Prolog executes a query of the
form (a,b) by executing a and then b.

Knowing this, we can write rules to translate words into queries. Specifically, we
can define a predicate with a clause for each word that will translate that word and then
call the predicate recursively to translate the rest of the list, thus:
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translate([show|Words], X, (Queries,display_record(X))) :-

1
.1

translate (Words, X,Queries) .

translate( [programmer |Words], X, (title (X, programmer) , Queries)) :-
!

.

translate (Words, X,Queries) .

The first of these puts an action at the end of the compound query; the second puts an
ordinary test at the beginning. Together these two rules translate

[show, programmer, . ..]

into

((title(X,programmer), ...),display_record(X)

where . .. stands for the rest of the list and its translation, respectively.

Any word for which there is no specific translation should be skipped. Together
with the cuts in the previous clauses, the following clause takes care of this:

translate([_|Words],X,Query) :- translate(Words,X,Query).

Finally, what happens at the end of the list? It would be handy if Prolog had
a “null” or “empty” query that could serve as the translation of an empty list. Sure
enough, there is such a thing—the built-in predicate true, which does nothing, but
always succeeds. Thus we can write

translate([],_,true).

and then translate will render [show, programmer] (with no subsequent words)
as:

({(title (X, programmer) , true),display_record (X))

It takes less time to execute the redundant true in the query than to perform extra
checks and avoid putting it there.

Exercise 2.3.5.1

Get translate working in the form shown. Add at least three more words to its vocab-
ulary and demonstrate that it works correctly.

Exercise 2.3.5.2

Will our keyword system need a special routine to discard punctuation marks?
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Exercise 2.3.5.3

Modify translate so that it prints a warning when a word more than five letters long is
ignored. (A more sophisticated system might have a list of hundreds of words that it can
safely ignore, and print a warning whenever it ignores a word that is not on this list.)

2.3.6 Lambda Abstraction

The alert reader will have noticed two things. First, we haven’t tackled comparisons and
their arguments yet. Second, the above clauses for translate contain a mysterious
variable X whose only purpose is to get unified with all the variables in the query, so that
they all become the same variable. As you might guess, the task of keeping the variables
straight gets complicated when we start dealing with arguments of comparisons.

Accordingly, we’re going to pull out one of our most powerful tools: LAMBDA
ABSTRACTION.

Lambda abstraction (or LAMBDA CALCULUS) may be the most useful technical tool
in all of semantics. It was introduced by the logician Alonzo Church (1941) as a way to
turn formulas into properties.

In formal logic, mortal(Socrates) means Socrates is mortal, and mortal (Plato)
means Plato is mortal. So how do you say simply mortal? According to Church, the
property of being mortal is expressed by the formula

(Ax)mortal (x)

where A is the Greek letter lambda, and (Ax) means that x in the formula is to be supplied
as an argument.

Here’s a more familiar example. In ordinary mathematics we “define” a function
f by writing a formula such as

Let f(x) =4x +2.

But this is really a definition, not of f, but of f(x); the reader is left to assume that
the definitions of f(y), f(z), and f(a + b+ ¢) are analogous, with y or z ora 4+ b +¢
substituted for x. If, instead, we say

Let f = (Ax)4x + 2.
lambda abstraction makes it explicit that x is not part of the definition, but merely a
stand-in for a value to be supplied from elsewhere.
The programming language Lisp uses lambda expressions regularly; in fact it is
built around them. A function definition such as
(DEFUN F(X) (+ (* 4 X) 2))

was written, in the earliest dialect of Lisp, as:

(DEFINE F (LAMBDA (X) (+ (* 4 X) 2)))
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That is, the definition of F is a lambda expression that says, “Give me a value—I’1l call
it X—and I'll multiply it by 4, add 2, and give you the result.” Then F is the name of
this function, and the lambda expression describes the function.

Exercise 2.3.6.1

Assuming that studies(plato, philosophy) means ‘Plato studies philosophy’, use lambda ab-
straction to write expressions that mean:

1. ‘studies philosophy’
2. ‘Plato studies’
3. ‘studies’

Exercise 2.3.6.2

What is the result of supplying the argument 200 to the expression (Ag)q? — g + 357
Distinguish supplying the argument from evaluating the expression.

2.3.7 Lambdas in Prolog

Now back to the main story. Because Prolog is built around predicates rather than
functions, the need for lambda expressions does not arise immediately, and there is no
standard notation for them. Nonetheless, they are easy to construct and use. While we’re
at it, we’re going to extend lambda abstraction beyond its original use, and use lambdas
to indicate any part of a formula that is supplied from outside, whether or not our intent
is to define a function or a property.

To see the need, recall that we defined programmer as title (X, programmer),
and show as display_record(X). In order to translate a query such as show all pro-
grammers, we need to put the definitions of show and programmer together in such a
way that the X’s in them are the same variable. But this isn’t easy. The structures
title (X, programmer) and display_record(X) have different principal func-
tors; they don’t unify with each other, and there is no easy way to get the X’s in them
unified together.

At this point we have two options. We could use ‘=. .’ to decompose terms into
lists and then search for the variables in the lists. Or—more simply—we could keep
another copy of the variable in an easily accessible place outside the term.

That’s where lambda expressions come in. A lambda expression is merely a two-
argument term whose arguments are a variable and a term in which that variable can
occur. For example:

lambda (X, title (X, programmer) )
lambda (X,display_record (X))

Notice that 1ambda doesn’t mean anything in Prolog; it’s just an arbitrary functor that
I picked. It’s also rather long. To be more concise, let’s use the character ~ as an infix
operator to hold lambda expressions together. Then we can write
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translate( [W|Words], X, (Queries,Q)) :-
action(W,X"Q),

1
.

translate (Words, X, Queries) .

translate([W|Words],h X, (Q,Queries)) :-
test (W,X"Q),

|
.

translate(Words, X, Queries) .

translate([Argl,W,Arg2|Words],X, (Q1l,0Q02,Q03,Queries)) :-
comparison(W,Y"Z27Q3),
!
argument (Argl,X Y Ql),
argument (Arg2,X"z"Q2),
translate (Words, X, Queries) .

[

translate ([_|Words], X, Query) :- % skip unrecognized word
translate (Words, X, Query) .

translate([],_, true).
The definitions of words look like this:

action (show,X " display_record(X)).
action(display,X display_record(X)).
action(delete,X " remove_record (X))

test (programmer, X "title (X, 'Programmer’)) .
test (salesrep,X title(X, ‘Sales rep’)).

comparison{over,Y Z" (Y>Z)).
comparison(under,Y 2" (¥Y<Z)) .

argument (saléry,X"Y”salary (X,Y)).
argument (birthdate,X Y "birth_date(X,Y)).
argument (N, _"Y" (Y=N)) :- number (N).

The last clause lets us use any number as an argument without looking anything up in the
database.? That is, it provides for numeric constants. Like salary and birth_date,
a number has two arguments, one for the person and one for the value, but the first
argument is ignored.

Exercise 2.3.8.1

What is the crucial difference between the first two clauses of translate? That is, what
is the difference between the way it treats actions and the way it treats tests?

3In ESL Prolog-2, use numeric (N) instead of number (N).
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Exercise 2.3.8.2

Put all these bits and pieces together and build a working natural language database query
system. Add at least five words to its vocabulary in addition to the words defined in the
code shown above.

Exercise 2.3.8.3 (large project)

Using techniques from this and the previous chapter, plus anything else that occurs to you,
build a natural language query system for a real database,

One possibility is to answer queries about users of a UNIX system. A suitable two-
table database is easy to obtain. The file /etc/ passwd contains the user name and real
name of every user (along with a lot of other information that is not useful). The command
last -200 >myfile will write, on myfile, a database about the 200 most recent
interactive sessions, showing who logged in when and for how-long. By combining these
databases you can answer such questions as, “How many times did Jane Smith log in this
week?”

To use these files, you will need to write a procedure that reads them line by line
using an appropriate tokenizer (see Appendix B), builds a Prolog fact from each line, and
asserts that fact into the knowledge base. The database will then consist of Prolog facts and
can be queried using the methods developed in this chapter.

2.4 TOWARD MORE NATURAL INPUT
2.4.1 Ellipsis

Often the queries or commands typed by the user are incomplete, the assumption being
that part of the query will be the same as the previous one. For example:

user: What programmers have salaries over 250007
computer: (prints a list or table)

user: Over 300007

computer: (prints another list or table)

Here Over 300007 is an example of ELLIPSIS (omission of repeated words).

Ellipsis is fairly easy to handle in keyword systems. If the new query is incomplete
(lacking an action, for instance), retain all parts of the previous query that are not
explicitly replaced in the new one.

Exercise 2.4.1.1

Modify your keyword system so that if the user does not supply an action, the same action
will be used as in the previous query.

2.4.2 Anaphora

ANAPHORA is the use of special words (ANAPHORS) to stand for individuals, events, or
other things already referred to. Anaphoric pronouns such as he, she, it, and (the) ones
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refer to people or things; the anaphoric verb does/did refers to actions or states. Adverbs
such as then and there can provide anaphoric reference to times and places.*

Anaphora is obviously useful in query systems. Users would like to be able to say
things like:

Give me a list of sales representatives in Georgia. List the ones in Florida. Now
list the programmers there.

To handle anaphora, the system must remember important characteristics of earlier queries
and must be able to figure out what the anaphors refer to. Usually, an anaphor refers
to the most recently mentioned thing that it can refer to; she would refer to the most
recently mentioned woman, for instance. In keyword systems, this is usually sufficient.
A full account of anaphora will require a much more powerful theory of semantics and
pragmatics (see Chapters 8 and 9).

Two other points need to be made. First, noun phrases marked with the are much
like anaphors. If you say the boat you mean either a previously mentioned boat, or a
boat that can be uniquely identified from the context.

Second, anaphors usually stand for referents (things referred to), not words or
phrases. Occasionally this distinction is important. For example,

If any customer has overpaid, display his balance.
is obviously not the same as:

If any customer has overpaid, display any customer’; balance.
Again, consider a discourse such as:

Display the first record.
Now display the next record.
Now delete it.

The last sentence does not mean ‘delete the next record’; it means ‘delete the record that

39 9

I just now referred to as “next”.

Exercise 2.4.2.1

Modify your keyword system to properly handle the anaphoric phrases which of them and
which ones (each referring to whatever records were retrieved by the previous query). The
user should be able to say such things as Show me all the programmers and then Which of
them have salary over 250007 or the like.

4Some linguists reserve the term ANAPHORA for pronoun reference only.



CHAPTER 3

Definite-Clause Grammars

3.1 PHRASE STRUCTURE
3.1.1 Trees and PS Rules

Templates and keywords ignore the role of CONSTITUENT STRUCTURE in human language.
That is, they fail to recognize that a sentence is not just a string of words—the words are
grouped into phrases, each of which consists of shorter phrases. This is a serious loss,
because many of the important properties of language are organized around constituent
structure.

Look for example at Figure 3.1. This tree diagram does two things:

o It groups the words into CONSTITUENTS such as the dog and into the garden.
e It gives names to the constituents, such as “noun phrase” and “prepositional phrase.”

For example, the diagram claims that into the garden is a constituent and a cat
info is not a constituent. This claim appears to be true. You can omit info the garden,
or replace it with a single word such as away, without grossly changing the structure of
the rest of the sentence. You can’t do this with a cat into.

The diagram also claims that the dog, a cat, and the garden are phrases of the
same kind (they are all labeled NP). This, too, appears to be a reasonable claim; these

36
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S
/\
NP VP

T

D/\ N Vv NP PP

/\
D/\ N P NP
5
the dog chased a cat into tllle gar‘d'en
Abbreviations: S Sentence

NP Noun Phrase

VP  Verb Phrase

PP  Prepositional Phrase
D  Determiner

N Noun

\'% Verb

P Preposition

Figure 3.1 Constituent structure of a simple sentence.

three phrases have many syntactic and semantic properties in common. Indeed, you get
grammatical sentences if you interchange them with each other.

Contrast all of this with a template or keyword system. Neither templates nor
keywords break the sentence into constituents in any systematic way, and neither of
them has a clear way to say that two sequences of words, found in different places, are
constituents of the same type.

The structure shown in Figure 3.1 is sanctioned, or GENERATED, by the following
set of PHRASE-STRUCTURE RULES (PS RULES):

S — NPVP
NP — DN
VP — VNP
VP — VNPPP
PP — PNP

D — the

D — a

N — dog

N — cat
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garden
chased
saw
into

v <=

P

The rules mean: “An S can consist of an NP followed by a VP. An NP can consist of a
D followed by an N. A VP can consist of a V followed by an NP” (and so on).

A set of rules such as these is called a GRAMMAR. We say that the grammar
GENERATES every sentence whose structure is entirely consistent with the rules. For
example, this grammar also generates the sentence The cat saw the dog assigning it the
structure shown in Figure 3.2. A grammar that generates sentences by means of explicit
rules, rather than merely describing them in some other way, is called a GENERATIVE
GRAMMAR. Ultimately, we would like to discover all the phrase-structure rules of English
(together with any other kinds of rules that might be needed) and build a complete
generative grammar of English.

S
NP VP
D N \4 NP
D N
l ‘ Figure 3.2  The tree structure of a sentence
the cat saw the dog shows the rules by which it is generated.

Exercise 3.1.1.1

Give tree diagrams of three more sentences that are generated by the grammar just given.

3.1.2 Phrase-Structure Formalism

Formally, each phrase-structure rule has a NONTERMINAL SYMBOL on the left (such as S,
NP, etc.) and an EXPANSION of this symbol on the right. The expansion consists of a
series of symbols which may be either terminal or nonterminal. The TERMINAL SYMBOLS
are the words that actually occur in the language, such as cat and saw.

Commonly, there is more than one rule expanding the same symbol. This means
that more than one expansion is permissible. For example, in the grammar just given, N
can be either cat or dog.

A symbol can even expand to nothing at all. According to one popular analysis,
the structure of Birds fly is:
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S

T

N. vP
RN |

1

0 birds fly

According to this analysis, the sentence begins with a determiner but you can’t see it or
hear it; it is the NULL (silent) determiner, introduced by the rule

D — @

Not all linguists accept this analysis, but the formalism provides for it.
Parentheses in a phrase-structure rule denote itemns that can be left out. For example,
the rule

VP — V(NP)
is really an abbreviation for two alternative rules:

vP — VNP
vP — V

That is, the rule says that a VP consists of a V which may or may not be followed by
an NP.

All the phrase-structure rules that we have discussed are CONTEXT-FREE because
each of them can apply in any context. For example, the rule NP — D N asserts that
any NP can consist of D and N, regardless of where it occurs. The alternative would be
CONTEXT-SENSITIVE rules such as “NP expands to D and N, but only when preceded by
a preposition.” Context-sensitive rules are rarely used in natural-language analysis; they
are potentially too complicated and do not lend themselves to a straightforward parsing
algorithm.

Some older textbooks refer to generation of a sentence as if it were a process:
“Start with an S. Use the first rule to rewrite S as NP VP. Use the second rule to rewrite
NP as D N,” and so on. This is a misleading way to use the rules because these are
certainly not the steps that the human brain goes through when constructing a sentence.
(You don’t start out by deciding to utter an S, then realize you need an NP and a VP,
and then choose your words only at the very last step.) The purpose of the rules is to
specify what structures are possible. The rules themselves are not a procedure; rather,
many different procedures for creating or analyzing sentences can be built upon them.

Exercise 3.1.2.1
Rewrite the rule VP — V (NP) (PP) (PP) as a set of rules that do not contain parentheses.
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Exercise 3.1.2.2

Draw a tree for The cat saw a problem as generated by the following grammar:

S — NPAuxVP
Aux — @
NP —  Ngroup
Ngroup — DN
VP — VNP
D —> a
D —  the
N — problem
N — cat
V. —  puzzled
V — saw

Exercise 3.1.2.3

The grammar in the previous exercise is needlessly complex. Simplify it. After simplifica-
tion, it should still generate exactly the same sentences and group the words into constituents
in the same way. The tree diagrams need not be the same in every detail (in fact if you
change the grammar at all, they won’t be). Give the tree for The cat saw a problem as
generated by your simplified grammar.

3.1.3 Recursion

Besides being able to describe constituency, phrase-structure rules have another big
advantage over templates and keywords: they can be recursive.

Recall that a template system has to match the entire sentence to a pattern. Consider
now the four sentences:

The dog chased the cat.

The girl thought the dog chased the cat.

The butler said the girl thought the dog chased the cat.

The gardener claimed the butler said the girl thought the dog chased the cat.

Obviously, there’s a recursive pattern here: the longer sentences have shorter sentences
within them. Specifically, a verb such as thought, said, or claimed can introduce another
complete sentence.

Templates can’t describe a recursive structure like this.! The best we could do,
with templates, would be to have a separate template for each of the sentence structures
above. But that’s not satisfactory, for two reasons:

o It simply ignores the important fact that all four sentences are examples of the
same repetitive pattern.

'Bobrow’s STUDENT could; it was a template system with recursion added. But this is not the way
templates are normally used.
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e There’s no limit to the number of templates that might be needed, because the pro-
cess can be continued almost without limit, producing longer and longer sentences.

The second of these is the more important. A sentence of this kind could have five
verbs, or ten, or maybe even fifteen. It won’t have 10,000, but that’s because of limits
on people’s patience and memory capacity, not because of any rule of grammar. This is
what linguists mean when they say that a language has a potentially infinite number of
different sentence structures.

PS rules solve the problem nicely. Recall that so far, the grammar we are working
with is:

S — NPVP
NP — DN
VP — VNP(PP)
PP — PNP

D — the

D — a

N — dog

N — cat

N — garden

V. — chased

V —  saw

P — into

To get recursive structures, all we need to do is add a few more rules:

VP VS
gardener
girl
butler
claimed
thought
said

<N<<=Zz=z=z

Il

The crucial change here is that now a VP can contain an S. Because every S contains a
VP, this allows there to be sentences within sentences. Now the grammar can generate
sentences such as The butler said the girl thought the dog chased the cat (Figure 3.3).

Exercise 3.1.3.1

How long is the longest sentence that can be generated by the grammar just given?

Exercise 3.1.3.2

Give two sentences that are not correct English but are generated by the grammar as given
so far. Draw trees for these sentences.
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* A TOP-DOWN parser starts out looking for a specific constituent, such as S, and
uses the rules to figure out what this can consist of:
o S consists of NP and VP.
o NP consists of D and N.
e Theis a D.
e Dogisan N ...

Both top-down and bottom-up parsers need the ability to BACKTRACK, i.e., try one rule,
and if it doesn’t work out, back up and try a different one. A parser that backtracks is
called a NONDETERMINISTIC parser.

In this chapter we will concentrate on nondeterministic top-down parsing. One
way to parse top-down is to give each of the PS rules a procedural interpretation. For
example,

e S — NP VP means “To parse an S, parse an NP and then a VP.”
e N — dog means “To parse an N, accept the word dog from the input string.”

(The input to a parser is always called the INPUT STRING even though in Prolog it is
usually a list of atoms, not a string of characters.) This process is often called RECURSIVE
DESCENT because each PS rule is made into a procedure, and these procedures can call
each other or themselves recursively.

Parsing then becomes a process very much like satisfying Prolog queries. The
initial goal is S; some of the rules transform this goal into other goals; and some of the
rules satisfy goals by accepting words. Figure 3.4 shows the complete process of parsing
The dog saw the cat.

In each step the parser either transforms the current goal into a new goal, or satisfies
the current goal by accepting a word. Sometimes, although there is no example of it here,
the parser backtracks. In all these respects top-down parsing is very much like the way
Prolog solves queries. This is not a coincidence; parsing is one of the applications that
Alain Colmerauer had in mind when he originally invented Prolog (Colmerauer 1978).

3.2.2 Parsing with Prolog Rules

To implement a parser, all we have to do is rewrite the grammar as a set of Prolog clauses.
A grammar written in this form is called a DEFINITE-CLAUSE GRAMMAR. “Definite clauses”
are merely Prolog rules and facts; definite-clause grammars were introduced to the world
by Pereira and Warren (1980), though they were implicit in earlier logic programming
research.

In a definite-clause grammar, each PS rule is a clause for a predicate with two
arguments, like this:

S — NPVP

s(L1,L) :- np(L1,L2), vp(L2,L).



44
Action: Goals: Input string:
Start with: S the dog saw the cat
Apply S — NP VP | NP VP the dog saw the cat
Apply NP— DN | DN VP | the dog saw the cat
Apply D — the the N VP | the dog saw the cat
Accept the NVP dog saw the cat
Apply N — dog dog VP dog saw the cat
Accept dog VP saw the cat
Apply VP - VNP | VNP saw the cat
Apply V — saw saw NP | saw the cat
Accept saw NP the cat
Apply NP—- DN | DN the cat
Apply D — the the N the cat
Accept the N cat
Apply N — cat cat cat
Accept cat (empty) | (empty)

Here:

Definite-Clause Grammars Chap. 3

Figure 3.4  Top-down parsing. Each
action changes either the input string or
the goal list, or both.

e L1 is the original input string, such as [the, dog, saw, the,cat];

e 1.2 is the input string without the initial NP, such as [saw, the, cat]; and
¢ L is the input string without the NP or the VP (in this case, []).

The rule itself could be expressed in English as:

To parse an S starting with input string 1.1 and ending with L,
first parse an NP starting with L1 and ending up with L2,
then parse a VP starting with L2 and ending up with L.

Or it could be expressed more declaratively as:

Removing an S from L1 gives L

if

removing an NP from L1 gives L2

and

removing a VP from 1.2 gives L.

The rules that introduce terminal symbols (words) take the form

n([dogl|L],L).

2Alternatively, L1, L2, and L could denote positions in the input string: the beginning of the string, the
end of the NP, and the end of the VP. But the aforementioned interpretation is more common.
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That is, “To parse a noun, remove dog from the beginning of the input string.” So a
complete grammar, in Prolog, looks like this:

s(Ll,L) :- np(L1,L2), vp(L2,L).
np(L1,L) :~ d(Ll1l,L2), n(L2,L).
p(Ll1,L) :- v(L1,L.2), np(L2,L).
d([thelL],L).
d(lalL]l,L).
([doglILl,L).
([cat|L],L).
([gardener|L],L)
([policeman|L], ).
([butler|L],L).
v([chased|L],L).
v{[sawlL],L) .

All of this deserves careful study. Take a moment to convince yourself that a query such
as

?- s([the,dog, chased, the,cat], (n

really will succeed if and only if, according to the available rules, the dog chased the
cat is a sentence. Prolog automatically chooses the right rules and backtracks where
necessary.

Exercise 3.2.2.1

Get this parser working on the computer and use it to parse several sentences.

Exercise 3.2.2.2

Is this kind of parsing reversible? That is, what happens if the input string is uninstantiated?
Try it and see.

Exercise 3.2.2.3

Show how to use this parser to “fill in the blanks” in a template such as [W, X, Y, Z, dog].
That is, give this template to the parser and make the parser generate a five-word sentence
that ends with dog.

3.3 DCG RULES

3.3.1 DCG Notation

The conversion of PS rules into Prolog clauses is so simple that it can be done auto-
matically. In fact Prolog includes a facility for doing just this. If you write clauses in
DEFINITE-CLAUSE GRAMMAR (DCG) NOTATION, which looks like this,
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S --> np, vp.
np --> d, n.
n --> [dog].

then, upon reading the clauses, consult and reconsult will convert them automat-
ically into

s(L1,L) :~ np(L1,L2), vp(L2,L).
np(L1,L) :- 4d(L1,L2), n(L2,L).
n(ldogl|L],L).

or the equivalent.> This conversion is done when the clauses are loaded from a file
into memory. Once they are in memory, the Prolog system completely forgets that they
were ever expressed in DCG notation. That’s why, if you type ‘?- listing.’ or
‘?- listing np/2.’° you will see the translated rules, not the rules you wrote.

The DCG translator affects only the clauses with the principal functor ‘-->’. All
other clauses are assumed to be plain Prolog and are left unchanged. Thus your program
can contain both DCG rules and plain Prolog clauses.

Here is an example of a grammar in DCG notation:

s --> np, vp.
np --> d, n.

vp --> Vv, np.

d --> [the]l;[a].

n --> [dogl;[cat];[gardener]; [policeman]; [butler].
v —--> [chased]; [saw].

Every DCG rule takes the form
nonterminal symbol —-> expansion
where expansion is any of the following:

e A nonterminal symbol such as np;

e A list of terminal symbols such as [dog] or [each,other];

o A null constituent represented by [1;

o A plain Prolog goal enclosed in braces, such as {write (’Found NP')};

A series of any of these expansions joined by commas.

If your Prolog requires all the clauses of a predicate to be contiguous, then the same
requirement will apply to DCG rules; for example, you can’t have an np rule followed
by a vp rule and then another np rule.

3These translations are used in Arity Prolog and several of the older Prolog implementations. The
translations used by Quintus are quite different and are explained in Section 3.3.3.
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That’s not a mistake; snoop really is written with four arguments in a plain clause, but
only two arguments in a DCG clause, because the DCG translator adds arguments. The rest
of the grammar is above.

Explain what snoop does and why it works. Show how snoop could be used to
modify the input string during parsing.

3.3.2 Loops

Like all left-to-right top-down parsers, DCG-rule parsers go into a loop when they en-
counter a rule of the form

A — AB

—that is, “To parse an A, parse an A and then ...”

The problem, of course, is that this rule calls itself before it has accepted anything
from the input string, so there is nothing to keep it from calling itself again and again,
ad infinitum. A loop of this kind could be spread over two or more rules, such as:

A — B
B - AC
Rules or sets of rules like these are called LEFT-RECURSIVE.

Left-recursion occurs whenever a constituent begins with another constituent of
exactly the same kind. Figure 3.5 shows some examples in English. The left-recursive
rule

NP — NP Conj NP
and the left-recursive rule pair

NP — DN
D — NP Poss

appear to be necessary to describe English sentences correctly.
It has long been known that any left-recursive grammar can be transformed into
another grammar that generates the same strings but is not left-recursive. For example,

NP — NP Conj NP
NP — DN
can be changed to:
NP — NPX Conj NP
NP — NPX
NPX — DN
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NP
/!\

NP Conj NP
N N
P P
the dog and the cat

/\

NP Poss
D N Figure 3.5 Two structures in English
‘ ‘ where a constituent begins with a constituent
of the same type. Top-down parsers loop on
the king ’s crown the rules required for such situations.

Unfortunately, although this generates the right strings, it gives a tree structure that is
not entirely right. There is no linguistic evidence that the distinction between NP and
NPX actually exists in the language.

Transforming the grammar, then, is not too useful in natural language processing.
We prefer to switch to a different parsing algorithm (Chapter 6) or make minor patches in
our top-down parsing algorithm to avoid loops while keeping the tree structure correct.

Exercise 3.3.2.1

What is the tree structure of the dog and the cat according to a grammar containing the rules
with NPX just discussed?

Exercise 3.3.2.2

Implement the rules

NP - NP Conj NP
NP - DN

in a DCG parser in such a way that no loop occurs. To do this, use snoop from the
previous section, so that your implementation of NP — NP Conj NP will do the following:

1. Look ahead, find the conjunction (and or or) in the input string, and remove it.
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2. Parse the first NP.
3. Parse the second NP.

This is not a theoretically satisfying way to process conjoined noun phrases, but it works.

3.3.3 Some Details of Implementation

Two details of implementation remain to be considered. First, in most Prologs the
DCG translator is actually a built-in predicate named expand_term.* Before asserting
clauses into memory, consult and reconsult pass every clause to expand_term.
If expand_term succeeds, its output is used in place of the clause that was passed to
it. Otherwise the original clause is used.

This is important because you can invent your own translator (for DCG rules or
any other kind of clauses) and implement it by adding clauses to expand_term. See
your Prolog manual for details.

Second, Quintus Prolog has a special way of translating DCG rules that contain
terminal symbols (words). Instead of rendering

n --> [dog].
as
n([doglL],L)
Quintus renders it as
n(Ll,L) :- 'C’'(L1,dog,L).
where ' C’ is defined as
([XIY],X,Y).

Here ' C’ stands for “connects” and was in fact called connects in early Edinburgh
implementations.

At first sight the use of ' C’ may seem to be just a waste of time. Why not match
the lists directly instead of calling another predicate? The answer, as O’Keefe (1985)
explains, is that ' C’ makes a difference when there is an embedded Prolog goal with
side effects. Consider for instance the rule

P --> [because], { write(’Got it!’) }, [of].

“In ALS Prolog, expand_term is called builtins:dcg_expand and you have to consult(dcgs)
before using it.
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This means “To parse a preposition, accept because, then write ‘Got it!’, then accept of.”
The idea is that the two words because of should be treated as a single preposition, and
furthermore, perhaps for debugging purposes, we want to see a message when the parser

accepts because.
In Quintus Prolog, this rule translates to

p(Ll,L) :- 'C’(L1l,because,L2), write(‘Got it!’), 'C’'{(L2,0f,L).

and works as intended. However, in Prologs that use the old-style translation, such as
Arity Prolog 4.0, the same rule translates to

p([because,of |IL],L) :- write(’Got it!’).

which does not give the intended result—it does not write “Got it!” until both because
and of have been accepted. If, instead of write(’Got it!‘), the embedded goal
had been a cut, the flow of execution could have ended up substantially different.

ALS Prolog solves the same problem a different way, by translating the rule as:

‘p([becauselLl],L) :- write(’Got it!’), Ll = [of|L].

The ALS translator knows which unifications are supposed to be done after executing
the embedded goal, and postpones them appropriately.
Exercise 3.3.3.1

What are the results of the queries

?- expand_term( (s --> np, vp), What).
?- expand_ term(green(kermit), What).

in your Prolog? (If neither one of them succeeds, find out how to use expand_term or
its equivalent in the implementation you are using.)

Exercise 3.3.3.2

How does your Prolog translate the following rule?

p --> {write(’Processing because-of’)}, [because,of].

Explain how you found out. What are the advantages and disadvantages of using this
translation?

3.4 USING DCG PARSERS
3.4.1 Building Syntactic Trees

A practical parser should do more than just say whether or not a sentence is acceptable;
it should also report the structure of the sentence. This raises two questions: how to
represent tree diagrams in Prolog, and how to get the parser to produce them.
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Representing tree diagrams is easy; they correspond to Prolog structures. For
example, the tree

S
/\
NP VP
N T
D N Vv NP
N
P
the cat chased the dog

can be represented as the structure:
s(np{d(the),n(cat)),vp(v(chased),np(d(the),n(dog)))

To produce this representation, the parser will make each rule fill in the part of
the structure for which it is responsible. For example, parsing begins with the rule
s --> np, vp. This rule must therefore contribute the outermost s (... ,...) in the
structure, where the portions represented by ... will be filled in by the np and vp rules,
respectively. The np rule in turn will contribute np (..., ... ), with arguments to be
supplied by rules yet lower down.

To implement this process, we’ll rely on the fact that DCG notation allows extra
arguments on predicates. If, for example, you write

s(a,b) --> npl(c,d), vple, f).
the translator will produce:
s(a,b,L1,L) :- np(c,d,L1,L2), vpl(e,f,L2,L).

These extra arguments make a DCG more powerful than an ordinary phrase-structure
grammar. (Normally, the extra arguments that you supply are placed before the arguments
supplied by the translator, but it’s wise to check your implementation.)

In the present case we want the arguments to represent the tree, so the syntactic
rules need to look like this:

s(s(NP,VP)) --> np(NP), vp(VP).
np(np(D,N)} --> d(D), n(N).

vp (Vp(V,NP)) --> v(V), np(NP).
d(d(the)) --> [the].

n{n(dog) ) --> [dog].
n(n(cat)) --> [cat].
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v(v(chased)) --» [chased].
v(v(saw)) --> [saw].

When the first rule is invoked, its argument is immediately instantiated as s (NP, VP),
but the variables NP and VP are not yet instantiated. The np rule then instantiates NP
to np (D, N) so that the whole structure is s (np (D, N) , VP) but D, N, and VP do not
yet have values. The structure will be completely instantiated when parsing is complete.
Moreover, if execution backtracks out of a rule, the instantiations established by that rule
are undone, just as in ordinary Prolog.

The key idea here is that unification and instantiation give you a way to work
with information that you do not yet have—just build a partly instantiated structure and
instantiate the details later. This technique gives Prolog much of its power.

Exercise 3.4.1.1

Get this parser working, then extend it by adding all the rules developed in Section 3.1.3.
- Show that it generates a correct parse tree for The butler claimed the dog chased the cat into
the garden.

Exercise 3.4.1.2

Construct a parser that outputs structural information, not by instantiating arguments, but by
performing a write at the beginning and end of each rule, like this:

s --> { write(’Beginning S...’) }, np, vp,
{ write(’Finished S.") }.

This parser will indicate the structure of The dog chased the cat by outputting messages like

“Starting S . .. Starting NP ... Determiner . ..Noun . ..End of NP ... Starting VP ...” and
SO on.

Exercise 3.4.1.3

What is fundamentally wrong with the technique used in the previous exercise? Why is its
output not always an accurate description of the tree?

Exercise 3.4.1.4 (project)

Write a Prolog program that reads a file of DCG rules without arguments and automatically
converts them into rules that build a syntactic tree, writing the translation on another file.
For example,

S --> np, vp.

should be translated into

s(s(V1,V2)) --> np(V1l), vp(V2).

To keep it simple, you need not handle rules that use semicolons or curly braces.
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Exercise 3.4.1.5

Write a predicate called display_tree_as_outline that will output a tree structure

such as s (np (d(the) ,n(birds)),vp(v(£fly))) in an indented outlinelike format,
like this:

thus making it easier to see the tree structure. (This is closely related to the “depth” exercises
in Appendix A.)
Exercise 3.4.1.6 (project)

Write a predicate called display tree that will output a tree structure such as
s(np{d{the),n(birds)),vp(v(£fly))) as an actual iree made of ASCII characters,

such as:
S
|
R R
np vp
| |
e |
d n v

|
|
the birds fly
or the like. This project is not easy, but the result is well worth having.

3.4.2 Agreement

Another use of arguments is to enforce AGREEMENT. In English, the verb and its subject
have to agree in number; that is, they are either both singular or both plural. Most nouns
take -s in the plural; most third-person verbs take -s in the singular, like this:

The dog chases the cats. (Singular subject, singular verb)
The dogs chase the cats. (Plural subject, plural verb)
*The dog chase the cats. (Singular subject, plural verb)
*The dogs chases the cats.  (Plural subject, singular verb)
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(Here as elsewhere, asterisks indicate ungrammatical examples.) Notice that the object
(the noun after the verb) is not involved in agreement; you can say either cat or cats in
any of the sentences above.

To make DCG rules account for agreement, we need to attach arguments to the NP
and VP to indicate whether each of them is singular or plural:

n(singular) --> [dog]; [cat]; [mouse].
n(plural) --> [dogs]; [cats]; [mice].
v(singular) --> [chases]; [sees].
v(plural) --> [chase]; [seel.

The point is that an NP has the same number (singular or plural) as its HEAD NOUN, and
a VP has the same number as its HEAD VERB. These rules ensure that this is so:

np (Number) --> d, n(Number).
vp (Number) --> v(Number), np(_).

The sentence consists of an NP and a VP whose numbers match:
s --> np(Number), vp (Number) .

A parser using these rules will accept only sentences in which the subject and verb agree
in number.

Exercise 3.4.2.1

Get a parser working that uses these rules, and verify that it works as intended. Specifically,
it should accept The dogs chase the cats but not *The dog chase the cats.

Exercise 3.4.2.2
Why couldn’t the VP rule be written as follows?

vp (Number) --> v(Number), np.

Exercise 3.4.2.3

Extend your parser so that it distinguishes between singular and plural determiners. For
example, a and an are used only with singulars; two is used only with plurals; and the is
used with both singulars and plurals. Your parser should reject *a dogs, *two dog, and the
like.

Exercise 3.4.2.4

Extend your parser so that it distinguishes between count and mass nouns. Give each
noun two features, Number (with values singular and plural) and Class (count
or mass).
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A count noun has a singular and a plural (dog, dogs). A mass noun, such as water
or szuff; has no plural, and usually refers to an indefinite amount of a substance.

The difference is important because different types of nouns take different determiners.
Some examples:

TYPE OF NOUN EXAMPLE SUITABLE DETERMINERS
singular count  dog, theory a(n), the, one, every
plural count dogs, theories (3, the, two, all
singular mass water, stuff’ @, the, all

plural mass (does not exist)

Your parser should accept a dog, the theory, two dogs, etc., but reject *a dogs, *one theories,
“every stuff, *two water, and the like.

3.4.3 Case Marking

Some English pronouns are marked for case. This means that the pronoun has a different
form before the verb than after it. For example:

He sees him. *Him sees he.
She sees her. *Her sees she.
They see them.  *Them see they.

The forms that come before the verb, he, she, and they, are called NOMINATIVE, and the
forms that come after the verb, him, her, and them are called ACCUSATIVE.’

“Before the verb” and “after the verb” is not a very good way of describing where
these forms occur. Instead, we can say, much more precisely and accurately, that:

S — NP VP introduces a nominative, and
VP — VNP  introduces an accusative.

To account for this with DCG rules, we’ll add a second argument for case, alongside the
argument for number. The rules for the pronouns will then be:

pronoun(singular,nominative) --> [he]l; [she].
pronoun(singular, accusative) --> [him]; [her].
pronoun(plural,nominative) --> [they].
pronoun (plural, accusative) -~> [them].

and we need to change the NP rules:

np (Number, Case) --> pronoun (Number, Case) .
np (Number, ) --> d, n(Number).

SHer is also a possessive determiner corresponding to kis, your, my, etc. Don’t let this confuse you.
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The second of these says that nouns are not marked for case. Because there is no case
marking on determiners, nouns, or verbs, the D, N, and V rules can be exactly the same
as in the previous section. But we need to change the S rule and the VP rule:

s --> np(Number,nominative), vp (Number).

vp (Number) --> v{(Number), np(_,accusative).
Now the parser accounts for case marking of pronouns.

Exercise 3.4.3.1

Incorporate these changes into the rules from the previous section, and verify that it accepts
He sees them and They see her but not *Them see he or *They see they.

Exercise 3.4.3.2

Should the rule PP — P NP specify a nominative or an accusative NP? Cite examples from
English to justify your conclusion, then add this rule to your parser, with appropriate case
marking.

3.4.4 Subcategorization

The structure of the English VP depends on the particular verb. Different verbs require
different things after them. For example:

VERB COMPLEMENT EXAMPLE
sleep, bark  None (The cat) slept.

chase, see  One NP (The dog) chased the cat.
give, sell Two NPs (Max) sold Bill his car.

say, claim  Sentence (Max) claimed the cat barked.

If these requirements are not met, the sentence is ungrammatical; you can’t say The dog
chased or John said the cat unless the missing part can be clearly understood from the
context.

This means we can’t really account for the VP with a single rule of the form
VP — V (NP) (NP) (S). Instead we need at least four rules,

VP —» V

VP — VNP

VP — VNPNP
VP — VS

plus a way of associating the right rule with each verb.
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One possibility is to eliminate the concept of “ver! * from the grammar, and instead,
use four different categories (call them V1, V2, V3, and V4). The VP rules would then be:

VP — VI

VP — V2NP

VP — V3 NP NP
VP — V4§

and the lexicon would say that bark is a V1, chase is a V2, and so on.

Notice that if we do this, we are claiming that there is no relationship at all between
V1, V2, V3, and V4; no more than between N and P. We will be claiming that bark,
chase, sell, and say are four totally different kinds of words. There will be no way to
write a rule that applies equally to all four of them.

That isn’t satisfactory. There are two good reasons to put all four kinds of verbs
into a single category called V:

e Only V’s are marked for tense and number and can serve as the head of a VP,

¢ Morphologically, all four kinds of V’s are alike (they take -s in the third person
singular, -ed in the past, and so on). The morphological part of the parser, which
we haven’t implemented yet, should not distinguish between different kinds of V’s.

What we need is a way to have things both ways: treat the various kinds of Vs alike
and treat them differently. That is, we need a category V, divided into SUBCATEGORIES.

One way to do this is—you guessed it—to add an argument to the V. Then rules
that care about this feature can specify its value, and rules that don’t care about it can
put an anonymous variable in place of it. Here goes:

vp —--> v(l).

vp --> v(2), np.

vp ~--> v(3), np, np.

vp --> v(4), s.

v(l) --> [barked];[slept].
v(2) --> [chased]; [saw].
v(3) --> [gavel; [sold].
v(4) --> [said];[thought].

(To keep the example from becoming too complicated, we’ve dropped the agreement
features. A real parser would, of course, keep them.) Now v (1) means a verb of class
1, v (2) means a verb of class 2, etc., and v (_) means a verb of any class. It turns out
that v (_) does not occur in any syntactic rules, but only in the morphological part of
the grammar.

Exercise 3.4.4.1

Construct a complete, working parser that implements subcategorization of verbs. Make it
accept the sentences
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The cat slept.

The dog chased the cat.

The girl gave the dog a bone.

The boy said the dog chased the cat.

but reject sentences in which verbs have the wrong kinds of complements, such as:

*The cat slept the dog.

*The dog chased.

*The girl gave the dog chased the cat.
*The boy said the cat.

3.4.5 Undoing Syntactic Movements

You can even use arguments to pick up a word from one position and put it down
somewhere else. This surprising ability turns out to be needed when parsing English
questions.

Consider a complicated sentence such as:

Max said Bill thought Joe believed Fido barked.

This sentence contains four NPs, Max, Bill, Joe, and Fido, and we can ask a question by
substituting who for any of them:®

Who said Bill thought Joe believed Fido barked? (Max.)

Who did Max say |, thought Joe believed Fido barked? (Bill.)
Who did Max say Bill thought |, believed Fido barked? (Joe.)
Who did Max say Bill thought Joe believed |, barked? (Fido.)

The first sentence simply puts who in place of Max. In each of the others:

e Exactly one NP is missing from somewhere in the sentence (it is denoted by °,’).
e Who did has been added at the beginning.

e The sentence means exactly what it would have meant if who had appeared in
place of the missing NP.

We would like the parser to move who back into the NP position with which it is
associated. To do this, we will use arguments to implement a HOLDING LIST on which

“Like most native speakers, we will ignore the difference between who (old nominative) and whom (old
accusative). For speakers who still distinguish them, the difference between who and whom is exactly the same
as the difference between he and him.
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who can be stored. A rule that finds a sentence-initial who will put it on the holding list,
and a rule later on that needs an NP but can’t find one will use the stored occurrence of
who.”

To implement a holding list, each rule needs two arguments, one for input and
one for output—that is, one to receive the holding list and one to output the (possibly
changed) holding list to the next rule.

Only two rules need special treatment here. In addition to the normal rule
S — NP VP, we need a rule to parse sentences that begin with who:

s(In,Out) --> [who,did], np([who|In],Outl), vp(Outl,oOut).

That is: In is the input received by the whole sentence (probably an empty list). This
rule accepts the words who did, then passes [who | In] as input to the NP. The output
of the NP is Out 1, which gets passed as input to the VP. Finally, the output of the VP
is Out, which is also the output of the whole sentence.

Then, in order to allow NPs to be missing, we need an NP rule that accepts no
words, but instead uses the who that it received in its input:

np ([who|Out],Out) --> [].

That is: One way to parse an NP is to accept who from the holding list rather than from
the input string.

The remaining rules do not modify the holding list; they just pass it along un-
changed from each step to the next. Rules for small constituents that cannot contain an
NP do not need arguments, which is why v has no arguments here.

s(In,Out) --> np(In,Outl), vp(Outl,out).

np(X,X) --> [max];[joel; [billl;[fido].
% Proper names are complete NPs

vp(X,X) --> v.
vp(In,Out) --> v, np(In,Out).
vp(In,Out) --> v, s(In,Out).

v --> [saw];[said]l; [thought]; [believed]; [barked].
v --> [see];[say]; [think]; [believe]; [bark].

"In a who-question, this list will never have more than one member. The ability to stack more than one
who(m) is needed for parsing nested relative clauses. For example:
The boy whom the girl whomy we saw |y liked ) . . ...

Holding lists go back to the work of Woods (1970), if not earlier, and are discussed in detail by Wanner
and Maratsos (1978).
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To parse a sentence, you must give the initial and final values of the holding list—namely
[] and []—as extra arguments of s in the query, like this:

?- s([1,I[], [who,did,max,see], []).
ves

Holding lists are the basis of the “extraposition grammars” of Pereira (1981), who
develops a useful extension of DCG notation for them. Their counterpart in unification-
based grammar is “slash features” (Gazdar, Klein, Pullum, and Sag 1985).

Exercise 3.4.5.1

Take the parser just given, get it working, and show that it parses

Who did Max say thought Joe believed Fido barked?
Who did Max say Bill thought believed Fido barked?
Who did Max say Bill thought Joe believed barked?

but does not accept *Who did Max say Joe saw Fido? or the like.

Exercise 3.4.5.2

Modify this parser so that, using another argument, it generates a tree structure. However, the
tree should not show the actual order of the words; instead, it should show who in the position
of the missing NP. For example, the tree for Who did Bill think said Fido barked? should be:

S
/\
NP VP
/\
1% S
/\
NP (%7
/\
Vv S
N
NP VP
Bill think who said FiLo baJked

3.4.6 Separating Lexicon from PS Rules

It is often convenient to separate the descriptions of individual words (the LEXICON) from
the PS rules. This is easy to do. Just write something like:
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n --> [X], { noun(X) }.
noun (dog) .

noun(cat) .
noun (gardener)

There are two advantages to doing this. First, because of indexing, it is much faster to
search through the facts

noun (dog) .
noun(cat) .

(etc.) than through rules of the form

n --> [dog].
n --> [cat].

Second, and more importantly, words can be defined by rules as well as by facts. Here
is a LEXICAL RULE that creates a noun ending in -ness from every adjective;

oe

noun {+N)
Strips the suffix "negs® from N and
looks for a corresponding adjective.

o0

oo

noun(N) :-
name (N, Nchars) ,
append(Achars,"ness",Nchars),
name (A, Achars) ,
adjective(a).

% adjective(?a)
Lexicon of adjectives

oe

adjective(flat).
adjective(green).
adjective (blue) .

(Recall that append is not built in.)

This rule is not exactly right—it doesn’t change y to i when forming words such
as ugliness—but it’s a start. The calls to name and append are time-consuming but
unavoidable. In a complete working system, it might be better to modify the tokenizer
so that some morphological analysis is done before the words are converted into atoms.
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Exercise 3.4.6.1

Modify this lexical rule so that it changes final y to i before -ness. That is, the rule should
produce correct spellings of words like ugliness and sliminess. Include a way to deal
with exceptions such as dryness (not *driness). Demonstrate that your implementation can
correctly answer queries such as:

?- n([ugliness?, []).
using the rule adjective (ugly) plus the lexical rule.

Exercise 3.4.6.2

The lexical rule given so far expects the noun to be instantiated. That is, a query like
noun (flatness) will succeed but noun (X) (with X uninstantiated) will fail. This
means that the rule, as shown, is of no use in generating sentences. Rewrite it so that it will
work with uninstantiated as well as instantiated arguments.

3.5 BUILDING SEMANTIC REPRESENTATIONS
3.5.1 Semantic Composition

Syntactic structure is not the only kind of output that a parser can produce. For natural
language understanding we also need a semantic representation—that is, a representation
of meaning. DCG parsers can produce semantic representations too.

To demonstrate this, we’ll work with a tiny subset of English in which the only noun
phrases are proper names (Fido, Felix), thereby postponing some complicated questions
about the semantics of NPs. The syntax that we will use is as follows:

S — NPVP
NP — Fido
NP — Felix
vP — V(NP)

V — chased

V. — slept

We will represent the meanings of sentences in first-order predicate logic, so that Fido
chased Felix will be chased(fido, felix) and Felix slept will be slept(felix).

What about the meanings of individual words? Proper nouns are no problem, since
they are logical individuals:

Fido fido
Felix = felix

To represent verbs, we will use lambda expressions, just as we did with keyword systems
in Chapter 2. Recall that a lambda expression is simply a formula with an argument
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missing. Thus if

Felix slept = slept (felix)

then

slept = (Ax) slept(x)

where Ax indicates that the value of x is to be supplied from elsewhere.
So far, so good, but the verb chased needs two arguments, a subject and an object.
We will represent it with one lambda expression inside another:

chased = (Ly)(Ax)chased (x,y)

This means, in effect, “Give me a value for y, such as felix, and I'll give you another
lambda expression that needs only a value for x, such as (Ax)chases (x, felix).”

The next task is to combine the meanings of the individual words and thereby
obtain the meanings of constituents. The parser will do this by supplying arguments to
lambda expressions. For example, fido combines with (Ax)slept (x) to give slept (fido).
Figure 3.6 shows how this works. Meaning seems to flow upward through the tree,
as the meanings of smaller constituents get combined to give the meanings of larger
constituents and ultimately of the whole S. But how can meaning flow upward when
parsing proceeds top-down? The same way structures were built top-down, even though
the actual information in them was only acquired at the bottommost (and therefore last)
level. The parser will work with partly instantiated structures and instantiate the details
when they finally bécome available.

Now for the implementation. Each predicate will have an argument for the semantic
representation. We will represent lambda expressions in Prolog with the operator ", just
as in Chapter 2, so the rules for specific words will be:

np(fido) --> [fido].
np(felix) --> [felix].
v(X"slept (X)) --> [slept].
V(Y™ (X"chased(X,Y))}) --» [chased].

Then it is simple to write phrase-structure rules that combine their arguments in the
desired ways:

s (Pred) --> np (Subj), vp (Subj “Pred) .

vp (Subj"Pred) --> v (Subj “Pred) .
vp (Subj "Pred) --» v(0Obj " (Subj “Pred)), np (Obj) .
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S
chased (fido, felix)

NP VP
fido (Ax)chased (x, felix)
Vv NP
(Ay)Y(Ax)chased(x, y) Selix
Figure 3.6  Semantic representations are
) ] built by combining the meanings of the
Fido chased Felix  individual constituents.

The parser will then accept queries such as:

?- s(Semantics, [fido, chased, felix], [1).
Semantics = chased(fido, felix)

?- s(Semantics, [felix,slept], []).
Semantics = slept(felix)

Notice that the semantics also goes part of the way toward ensuring that chased has an
object and slept does not. Unlike the original phrase-structure grammar, the parser does
not accept *Fido slept Felix, and although it accepts *Fido chased, it produces a partly
uninstantiated semantic representation that could easily be rejected by some other part
of a natural language processing system.

This is a demonstration of SEMANTIC COMPOSITION, building the semantic represen-
tation of each constituent from those of its subconstituents. The technique shown here
barely scratches the surface. We will return to semantic representations in Chapter 7, but
first, there are many syntactic issues to be addressed.

Exercise 3.5.1.1

According to this grammar, what is the semantic representation of *Fido chased?
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Exercise 3.5.1.2

Get the parser working and add the words saw, barked, Max, and Mary. Generate semantic
representations for Fido barked and Mary saw Max.

Exercise 3.5.1.3

Modify the parser described above so that it builds both syntactic and semantic representa-
tions. (Use one argument for each.)

3.5.2 Semantic Grammars

A SEMANTIC GRAMMAR is something intermediate between a keyword or template sys-
tem and a phrase-structure grammar. Semantic grammars use phrase-structure rules, but
words are classified by their function in a particular situation (such as computer com-
mands or database queries) rather than general syntactic principles. Representations of
meaning are built by any of several techniques, including the method described in the
previous section.

Figure 3.7 shows some analyses of sentences that might be assigned by semantic

grammars in various situations. There are no “right” or “wrong” analyses; the goal is

command
action object parameters
source destination
diskdrive diskdrive
RN N
copy files  from drive A to drive B
query
action test
/\
test test
test test

comparison

value  operator value

show programmers in Florida with  salary over 20,000

Figure 3.7 Semantic grammars assign arbitrary analyses to fit the purposes of a partic-
ular computer program.
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purely to build something that works for a specific purpose. Parsing is often preceded
by simplification just as in a template or keyword system.

Exercise 3.5.2.1

Reimplement your keyword system from Chapter 2 as a semantic grammar.

3.6 OFFBEAT USES FOR DCG RULES

Some people use DCG rules not just for parsing, but also to define almost any predicate
that works through a list item by item. I do not advocate this practice, but you should
be aware of it. Here is a predicate that counts the elements in a list:

count_off (N) --> [_], count_off{(M), { N is M+1 }.
count_off(0) --> [].

More precisely, this predicate accepts a specified number of elements from the beginning
of the list, thus:

?- count_off (N, [a,b,c],[]).
N =3

?- count_off (N, [a,b,c,d,e,f],[e, £]).
N = 4

?- count_off (2, [a,b,c,d,e]l,What).
What = [c,d,e]

Since this predicate has nothing to do with parsing, the use of DCG notation tends to
obscure rather than clarify how it works, and count_off would be better off written
in plain Prolog:

count_off (N, [_|IRest],Tail) :- count_off(M,Rest,Tail), N is M+1l.
count_off(0,Tail, Tail) .

(Note that count_off (0) --> [] doesn’t mean “do this at the end of the list”; it
means “do this without accepting anything from the list,” although in fact it is the only
rule that can apply when the list is empty.)

Exercise 3.6.0.1

Use DCG rules to implement a predicate that accepts a list of numbers and computes their
sum.
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Exercise 3.6.0.2

Is ‘dog --> "dog".’ alegal DCG rule? If so, what does it mean and how might you
use it?

Exercise 3.6.0.3 (project)

Write a program that breaks a string of characters into words by using DCG rules. That is,
it should convert "this is it" to [this,is,it] or the like.

This is a reasonable thing to do, because breaking a string into words is a kind of
parsing. The phrase-structure rules might include the following, or something similar:

Token —  Special-character
Token —  Alphanumerics
Alphanumerics —  Alphanumeric—character Alphanumerics
Alphanumerics — ¢ '
Alphanumeric-character — a
Alphanumeric-character — b
Alphanumeric-character — ¢

For detailed advice see Appendix B.

3.7 EXCURSUS: TRANSITION-NETWORK PARSERS

DCG parsers are equivalent in power to an older parsing technique called AUGMENTED
TRANSITION NETWORKS (ATNs). This section will briefly review ATNs as well as the
simpler transition networks from which they are derived. There is little point in imple-
menting an ATN in Prolog, since DCGs do the same job better, but it is useful to know
how ATNs and DCGs correspond. -

3.7.1 States and Transitions

A TRANSITION NETWORK is a parser that has a number of distinct STATES and proceeds
from state to state in a manner controlled by the input string.

Figure 3.8 shows a transition network that parses the dog, the big dog, the cat,
and nothing else. Circles represent states and arcs represent transitions. A small ar-
row shows where to start, and a double circle indicates a state in which parsing can
stop.

To parse a sentence, the parser must get from the initial state to a state in which
it can stop. This is done by following the arcs and accepting, from the input string, the
words that are on the arc labels. An unlabeled arc is called a JuMP ARC and allows a
state transition without accepting any input. So the process by which this network parses
the dog is:
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the big dog
™ T N T T T
® ® ®

\_—/ Figure 3.8 A finite-state transition

cat network.

Start in state 1.

Go to state 2 accepting the.
Go to state 3 via the jump arc.
Go to state 4 accepting dog.
Stop.

Because it has a finite number of states, this is a FINITE-STATE TRANSITION NET-
WORK (FSTN) or FINITE AUTOMATON.

A transition network is DETERMINISTIC if it cannot backtrack, and NONDETER-
MINISTIC if it can. More formally, a network is deterministic if, at every step, the
choice of arcs is uniquely determined by the next word in the input string. In natu-
ral language processing, we work with networks in which nondeterminism is allowed,
and we will assume that they are implemented in such a way that backtracking is
possible.

A FINITE-STATE TRANSDUCER is an FSTN in which each of the transitions can
produce output as well as accepting input. Figure 3.9 shows a finite-state transducer that
can translate the big dog and the cat (but almost nothing else) into Spanish. The arc
label the:el means “input the and output el,” and likewise for the other labels. Thus,
this network translates the dog to el perro; the big dog to el gran perro; and the cat to
el gato. By reversing the roles of the input and output, we could just as easily get it to
translate Spanish into English.

the:el big:gran  dog:perro
RN W "
O @ ®

\‘/ Figure 3.9 A finite-stite transducer that

cat:gato translates English phrases into Spanish.

A finite-state transition network can contain CYCLES; that is, an arc can loop back
to the state that it started in, or even to an earlier state. This enables the network to
accept arbitrarily long strings. Figure 3.10 shows a network that accepts
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the dog

the big dog

the big big dog

the big big big dog  (etc.).

Although the number of states is finite, the number of words in the input string of this
network is not bounded.

big
the dog
@ @ Figure 3.10 This finite-state transition
network can accept arbitrarily long strings.

Finite-state transition networks are easy to implement in conventional programming
languages, but they are clearly not adequate for human language; they provide no way
to recognize constituent structure. Nonetheless, they have their uses in implementing
templatelike systems (Chapter 2) and in analyzing morphology (Chapter 9).

Exercise 3.7.1.1

List the steps that the network in Figure 3.8 goes through when parsing the cat.

Exercise 3.7.1.2

Does the petwork in Figure 3.8 parse the big car? Explain.

Exercise 3.7.1.3

Does the network in Figure 3.8 accept the big (with no words following)? Explain.

Exercise 3.7.1.4

Are the networks in Figures 3.8 and 3.10 deterministic?

Exercise 3.7.1.5

List the steps that the transducer in Figure 3.9 goes through when translating the dog into
Spanish.

Exercise 3.7.1.6

Can the network in Figure 3.10 accept an infinitely long string? What is the difference
between accepting an infinitely long string, and accepting arbitrarily long strings?
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3.7.2 Recursive Transition Networks

A RECURSIVE TRANSITION NETWORK (RTN) is one in which a state transition can either
accept a word, or execute (call) another entire network. In particular, a network can call
itself, either directly or indirectly (for example, S can call VP and VP can call S). This
makes it possible to parse sentences within sentences. It also means that the number
of states available to the parser is no longer finite, because any number of recursive
invocations of the same network could be in use at the same time.

Figure 3.11 shows an RTN that parses sentences such as The gardener said the
butler thought the dog barked (compare Section 3.1.3 above). By using recursion, this
network parses an S within an S. Here the lexicon is shown separate from the transition
network. This is standard practice, but the lexicon could, of course, be rendered as a
transition network if we wanted to do so.

NP VP

NP: @ @

VP: @ @

Lexicon:

D: the

N: dog, cat, butler, gardener
V: said, thought, barked

Figure 3.11 A recursive transition network.

RTNs are essentially equivalent to phrase-structure rules or DCG rules without
arguments. There is, however, a minor difference. RTNs can contain cycles that allow

" unlimited repetition (Fig. 3.12); DCG rules and ordinary PS rules cannot. This is not a se-
rious problem, because any network containing a cycle can be replaced by a ser of PS rules
that use recursion. For example, the network in Figure 3.12 can be replaced by the rules
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NP — DN
N -  Adi N
N > N

which, of course, go into DCG straightforwardly.

Adj
D N
A R\ Z
@ @ Figure 3.12 A cycle in an RTN,

These three rules generate the same sequences as the original network (D N, D
Adj N, D Adj Adj N, etc.), but the tree structure is not the same. The rules introduce
N'! constituents which the original network does not. Fortunately, there are linguistic
reasons for thinking that these N' constituents are real, and thus that the cycle in the
network is not really appropriate for describing the structure of English.
Exercise 3.7.2.1
List the steps that the RTN in Figure 3.11 goes through when parsing each of these sentences:
The dog barked.
The butler said the gardener thought the dog barked.

Exercise 3.7.2.2

Construct a definite-clause grammar that is equivalent to the RTN in Figure 3.11.

Exercise 3.7.2.3

List the steps that the network in Figure 3.12 goes through when parsing the big big big dog
(assuming an appropriate lexicon).

Exercise 3.7.2.4

Diagram the tree structure of the big big big dog using the PS rules given in this section.
3.7.3 Augmented Transition Networks (ATNs)

We saw earlier that the real power of DCGs comes from the ability to have arguments
on the nodes. The equivalent of a DCG with arguments is an AUGMENTED TRANSITION
NETWORK (ATN), which is like an RTN except that:

e Each subnetwork can have REGISTERs (memory locations) in which information can
be stored.

e Each arc can have actions associated with it. These actions include storing, re-
trieving, and testing register values, and adding items to, or retrieving items from,
a holding list.
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e Data can be transferred between the registers of a subnetwork and the registers of
the network from which it was called. For example, register values associated with
a noun can be copied into the registers of the NP in which the noun occurs.

There are several different notations for ATNs, with different abstract instruction sets,
and, compared to DCGs, all of them are cumbersome. Woods (1970) and Bates (1978)
expound ATNs in detail. Pereira and Warren (1980) show that all ATNs can be trans-
lated into DCGs, and that, in general, the DCGs are more concise, more readable, and
potentially faster to execute.

Figure 3.13 shows a simple ATN that enforces subject-verb agreement. Here are
the steps that it goes through when parsing The dog sees the cats (ignoring backtracking):

Start in state 1 of S network.
Call NP network.
Start in state 1 of NP network.
Accept D (the).
Proceed to state 2 of NP network.
Accept N (dog, NUM=SINGULAR).
Set register NUM of NP = SINGULAR.
Proceed to state 3 of NP network and exit.
Set register NUM of S = SINGULAR.
Proceed to state 2 of S network.
Call VP network.
Start in state 1 of VP network.
Accept V (sees, NUM=SINGULAR).

Set register NUM of VP = SINGULAR.
Proceed to state 2 of VP network.
Call NP network.
Start in state 1 of NP network.
Accept D (the).
Proceed to state 2 of NP network.
Accept N (cats, NUM=PLURAL).
Set register NUM of this NP = PLURAL.
Proceed to state 3 of NP network and exit.
Proceed to state 3 of VP network and exit.
Test that NUM of S = NUM of VP
(the test succeeds; both have the value SINGULAR).
Proceed to state 3 of S network and exit.
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NP VP
Set NUM of §  Test NUM of S
= NUM of NP = NUM of VP

S: TN
0 ©)

z N
D Set NUM of NP
= NUM of N

NP: @ @

\%

Set NUM of VP
= NUM of V NP

VP: @ @
~_ "

Lexicon:

D: the

N: dog, cat, mouse NUM = SINGULAR
dogs, cats, mice NUM = PLURAL

V: chases, sees NUM = SINGULAR

chase, see NUM = PLURAL

Figure 3.13 An augmented transition network that enforces subject-verb agreement.

Figure 3.14 shows an ATN that parses questions such as Who did the gardener
think chased the cat? using a holding list.

A striking difference between ATNs and DCGs is that ATNs lack the concept
of unification. Thus, in place of simply trying to instantiate variables, ATNs have to
perform lots of separate assignments and comparisons. In Chapter 5 we will explore the
usefulness of unification in grammatical analysis.

Exercise 3.7.3.1

Is the network in Figure 3.13 deterministic? Explain.

Exercise 3.7.3.2
Construct DCGs equivalent to the networks in Figures 3.13 and 3.14.
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who
Place who on di d NP VP

- holding list

I T W
| © & o 6

NP: @ @

Retrieve who
from holding list

™ 7 T T

VP: @ @
~_ "

Lexicon:

D: the .

N: dog, cat, butler, gardener

V: say, said, think, thought, bark, barked

Figure 3.14 An augmented transition network that parses wh-questions.

Exercise 3.7.3.3

List the steps that the network in Figure 3.14 goes through when parsing the sentence Who
did the butler say thought the dog barked?




CHAPTER 4

English Phrase Structure

4.1 PHRASE STRUCTURE

The main purpose of this chapter is to develop a rough-and-ready set of phrase-structure
rules for parsing some of the major structures of English, and, perhaps more importantly,
to illustrate how a set of rules is developed.

Developing a formal grammar is a lot like writing a computer program; there are
many points at which you can do any of several things as long as you follow up the
consequences of your decision consistently. There are many other places at which one
choice is probably better than another, but it will take a lot of research to find out which
is better, and the difference may never show up during the lifetime of one project.

The rules developed here are not comiplete, for two reasons. First, if we tried to
cover all the PS rules of English, this chapter would be hundreds of pages long. Second,
there are structures that cannot be parsed with phrase-structure rules alone; we will look
at some of them and develop appropriate parsing mechanisms in the next chapter.

The rules in this chapter incorporate many of the ideas of Radford (1988), Jackend-
off (1977), and Gazdar, Klein, Pullum, and Sag (1985) but do not adhere strictly to any
theory. In particular, for convenience I ignore the distinction between adjuncts and com-
plements, although I think it is valid; see Radford for a clear and detailed presentation.
Students who have been trained in transformational grammar should note that here—as

77
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almost always when parsing—we are analyzing surface structure and not attempting to
capture deep generalizations.

4.1.1 Trees Revisited

Before developing PS rules we must look more deeply into their significance. Consider
a syntactic tree like the one shown in Figure 4.1. The points where lines begin or end

S
/\
NP VP

e

D/\ N 1% NP PP

A
D/\ N P NP
5
the dog chased a cat into tl’le garLen

Figure 4.1 A syntactic tree.

in a syntactic tree are called NODES. Normally, nodes bear LABELS such as S, NP, VP,
NP, or dog.

If two nodes are connected by a line, the upper node IMMEDIATELY DOMINATES
the lower one. More generally, one node DOMINATES another if you can get from the
first node to the second by following lines downward. For example, the first NP node
dominates D, N, the, and dog.

Two nodes are said to be SISTERS if they are immediately dominated by the same
node. For example, D and N are sisters in the tree above. Their MOTHER is NP; that is,
they are DAUGHTERS of NP,

The words at the bottom of the tree diagram are the TERMINAL NODES. A CON-
STITUENT consists of all the terminal nodes dominated (immediately or indirectly) by a
particular nonterminal node.

A tree is equivalent to a LABELED BRACKETING of words into groups. For example,
the tree shown at the top of page 79 could be written as

[s [ne [D @ p] [n dog ~] we] [ve [v barked v] ve] sl

Without loss of information, the labels could be omitted on either the opening or closing
brackets (not both). Labeled bracketings are often used to indicate part of the structure
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S
/\
NP vp
N |
0
a dog barked

of an example sentence, as in:
We thought [ it was raining .

Exercise 4.1.1.1

In Figure 4.1, which nodes are dominated by VP? Which are immediately dominated by
VP?

Exercise 4.1.1.2
In Figure 4.1, identify the sisters of PP and the daughters of PP.

Exercise 4.1.1.3
Express Figure 4.1 as a labeled bracketing.

Exercise 4.1.1.4

Express [a [5 [c xxxyyy 11 [p zzz 1] as a tree diagram.
4.1.2 Constituents and Categories

A tree gives two kinds of information about the sentence: it divides it into CONSTITUENTS
(phrases) and classifies these constituents into CATEGORIES such as NP, VP, and the like.
For example,

e rthe is a constituent of type D; -

e dog is a constituent of type N;

e the dog, a cat, and the garden are constituents of type NP;

e chased a cat into the garden is a constituent of type VP;

e the dog chased a cat into the garden is a constituent of type S.

How do we know this is the right way to group the words in this sentence—that,
for example, into the garden really is a constituent and a caz into is not? Although none
of them is infallible, there are several standard tests for constituency:
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e Any string of words that can be MOVED AS A UNIT is probably a constituent. Instead
of The dog chased a cat into the garden you can say Into the garden the dog chased
a cat. This argues strongly that into the garden is a constituent.

e Any string of words that can be DELETED is probably a constituent. Again, you can
leave out into the garden without changing the grammatical or semantic relations
in the rest of the sentence. This, too, argues that info the garden is a constituent.

o Usually, the MEANING of a constituent is, in some sense, a unit. It makes sense to
ask what into the garden means; it makes much less sense to ask what a cat info
means.

The strongest argument for the correctness of any phrase-structure tree, however, is the
fact that it is generated by a coherent system of rules that also accounts for many other
facts about English syntax.

The claims that a tree makes about categories are also important. For example, by
labeling the cat, the dog, and the garden all with the label NP, this tree makes the claim
that they are syntactically alike—they can all occur in the same positions. And indeed
a cat chased the dog into the garden, or even the garden chased a cat into the dog, is a
grammatical (if somewhat odd) sentence of English.

Exercise 4.1.2.1
List all the constituents that are identified by Figure 4.1.

Exercise 4.1.2.2

Cite at least two kinds of ev1dence that a cat is a constituent in the sentence The dog chased
a cat into the garden.

Exercise 4.1.2.3

Cite evidence that, in The dog chased a cat inio the garden, the and a belong to the same
category.

4.1.3 Structural Ambiguity

Many sentences are AMBIGUOUS, i.e., the same sentence can mean two or more different
things. Usually the ambiguity is LEXICAL—that is, a word or idiomatic phrase within
the sentence can have more than one meaning. For example, glasses can mean either
spectacles or drinking-glasses.

But some ambiguities are STRUCTURAL; they result from the existence of more than
one tree structure for the same string of words. Figure 4.2 shows a striking example: 1
saw the boy with the telescope can mean either that the boy had the telescope, or that I
did the seeing with the telescope, and sure enough, the rules of English allow two tree
structures, one with each meaning. In one tree, with the telescope modifies boy (and thus
the boy wzth the telescope is a constituent); in the other, with the telescope modifies saw.
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S
/\

NP VP

/\

Pmi}wun v NP
/l\
D N PP
/\
P NP
5
I saw the boy with tt'le teles‘cope
S
/\
NP VP

I /I\

Pronoun \%4 NP pP
A
D/\ N P NP
5
I saw the boy with tlyle teles'cope

Figure 4.2 The two meanings of this sentence correspond to two tree structures.

Exercise 4.1.3.1

Give the two meanings of each of the following sentences, and state whether the ambiguity
is structural, lexical, or both. Explain how you know.

By 1960 the Soviet Union had several satellites.
The painter put on another coat.
The judge threw the book at him.
Visiting relatives can be tiresome.

We like flying planes.
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4.2 TRADITIONAL GRAMMAR

4.2.1 Parts of Speech

Many of the terms and concepts used in phrase-structure grammar come from a centuries-
old tradition. The classification of words into “parts of speech” (nouns, verbs, adjectives,
etc.) goes back to classical antiquity (Robins 1967) and was originally developed for
Greek and Latin. It works reasonably well for English if some adjustments are made.
This section will review traditional grammatical concepts briefly.

Table 4.1 illustrates the traditional parts of speech in English. The classification
shown is neither complete nor entirely self-consistent. It is given mainly to illustrate the
traditional terminology.

The first thing to note is that these categories are syntactic, not semantic. They
are supposed to explain where each word can occur in the sentence; they are not a
classification of word meanings. This is important because schoolbooks often say that
“a noun denotes a person, place, or thing,” “a verb denotes an action or event,” and so
forth. Such assertions are demonstrably false. Surely a sunset or a burglary is an event,
but sunset and burglary are nouns, not verbs.

This does not mean that meaning is of no help in classifying words. Nouns do
tend to refer to people, places, and concrete objects, and verbs do tend to refer to events,
actions, or states. It’s just that this tendency is not absolute. It would be odd if mountain
were a verb or if kick were not a verb.!

Even when words of different categories refer to the same thing, the meaning is
packaged differently. The noun burglary and the verb burglarize denote the same kind of
event, but there is a difference. The verb is marked for tense (past or present) and requires
a subject and object; the noun does not. The noun, on the other hand, requires a determin-
er and can be made plural to denote more than one event of the same kind. In the Middle
Ages, these differences in “packaging” were called modes of signifying (Covington 1984).

Exercise 4.2.1.1

Using traditional terminology, give the category of each word in each of the following
sentences: :

Syntax and semantics are my favorite subjects.

We found him easily when he was ready.
1 feel sick.

Exercise 4.2.1.2

A few grammar handbooks say that the sentence Hopefully, we’'ll succeed either is ungram-
matical, or means ‘We will succeed in a hopeful manner’ (not “We hope we’ll succeed’ as
the speaker intends). Based on what Table 4.1 tells you about adverbs, critique this claim.

1But mountain is a verb in Nootka, a Native American language in which almost every word has both
noun and verb forms. English, like most European languages, tends to make other categories into nouns; we
have nouns derived from verbs (destroy — destruction), adjectives (red — redness), and even particles (out
— outing).
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TABLE 4.1 TRADITIONAL SYNTACTIC CATEGORIES (PARTS OF
SPEECH)

Nouns
Proper (name): Joe, Frankenstein, America
Common (ordinary)
Count (distinguishes singular from plural): dog/dogs, theory/theories
Mass (Noncount) (no plural): water, air, stuff, superiority
Gerund of verb: singing, painting (as in painting is fun)

Pronouns
Personal: he/him, she/her, it, we/us, you, they/them
Reflexive: himself, herself, itself, ourselves . . .
Demonstrative (Deictic): rhis, that (as in This is if)
Indefinite: someone, everybody, nobody, something . . .

Determiners
Articles: the, a (an)
Demonstrative (Deictic): this, that (example: this house)
Quantifiers: every, all, some, three
Possessive pronouns: my, your, his, her, their

Adjectives .
Positive: big, good, exceptional
Comparative: bigger, better
Superlative: biggest, best
Participle of verb: distracted, singing (as in a singing cowboy)

Verbs
Intransitive (taking no object): sleep, yell, bark
Transitive (taking one object): kick, emulate, destroy, read
Ditransitive (taking two objects): give (as in give Joe the book)
Copula (verb of being): be, am, is, are, was, were
Modals (preceding another verb): may, might, can, could, will, would . . .
Auxiliaries (preceding the verb, can follow a modal): be, is, are, has

Adverbs
Modifying a verb: quickly, slowly, today, here
Modifying an adjective or adverb: very, extremely, slightly
Modifying the whole sentence: hopefully, unfortunately

Prepositions ‘
With objects: in, before, after, below . .. (example: in the house)
Without objects (Particles): up, down, in, out (example: Look it up)

Conjunctions
Coordinating (joining constituents of same type)
Simple: and, or
Correlating: both. .. and, either. .. or, neither. .. nor
Subordinating (joining embedded sentence to main sentence):
before, after, although, because, when, whenever

Interjections: no! yes! oh! ouch! wham! bang! alas!
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4.2.2 Grammatical Relations

Traditional grammar analyzes sentences, not by drawing constituency trees, but by iden-
tifying relationships that connect one word to another. For example, in The dog chased
the cat into the garden, a traditional grammarian would say that:

dog is the SUBJECT of chased;

cat is the (DIRECT) OBJECT of chased;

into the garden MODIFIES (describes) chasgd;

garden is the object of the preposition info; and

the three occurrences of the modify dog, cat, and garden respectively;

Table 4.2 lists the traditional names for grammatical relations. As you can see, there is
often some uncertainty whether a grammatical relation belongs to a word or to a whole
phrase; some people say the object of chased is cat and others say it is the cat. In
traditional grammar this uncertainty was never entirely cleared up. '

TABLE 4.2 GRAMMATICAL RELATIONS IN TRADITIONAL
GRAMMAR

Subject: Noun phrase required to precede a verb.
Examples: Birds fly. All the students are listening.
Clause (embedded sentence) as subject: That he succeeded is amazing.

Predicate: The entire verb phrase.
Examples: Birds ﬂl All the students are playing soccer.

Object: Noun phrase required to follow a verb or preposition.
Object of preposition: in the house
Object of verb: John loves Mary. Asimov wrote two hundred books.
Indirect (first) object of two-object verb: John gave Bill the answers.
Direct (second) object of two-object verb: John gave Bill the answers.

Complement: Something other than an NP required after a verb.
Adjective as complement: He looked silly.
Clause (embedded sentence) as complement: We thought he was crazy.

Modifier: Any word or phrase that describes another.
Adjective modifying noun: big dogs
Adverb modifying verb: barks loudly
Clause modifying sentence: When they sang, we laughed.

Grammatical relations can be defined in terms of phrase structure. For example,
an object is an NP immediately dominated by VP or PP; a subject is an NP immediately
dominated by S; and so forth (Chomsky 1965).
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Exercise 4.2.2.1

Using Table 4.2 as a guide, identify as many grammatical relations as possible in the
following sentences:

Three snails crept into the garden.
The slimy creatures gave us a sudden surprise.
When we saw them, we jumped.

4.3 THE NOUN PHRASE AND ITS MODIFIERS
4.3.1 Simple NPs

In constructing a set of phrase-structure rules we will begin with the NP. To a first
approximation, the NP rule looks something like this:

NP — D (Adj) N (PP)
This accounts for NPs such as:

the dog

the gray cat

the dog in the garden

the young boy with the telescope

The determiner can be null, as in our well-worn example [np Birds ] fly. This is accounted
for by the rule

D — @

alongside D — the and the like.

Most determiners are single words (the, a, some, every, five, and the like). For now,
we’ll ignore NPs in which an article and a quantifier occur together (e.g., [p the two |
boys), as well as the internal grammar of numbers such as three thousand four hundred
twenty-two and complex quantifiers such as more than three. For interesting analyses of
phrases such as these, see Jackendoff (1977).

In Chapter 3 we saw that a determiner can consist of a complete NP followed by
possessive s, as in [xp the junkman 1’s daughter. The NP can be of almost any type, but
there seems to be a requirement that it end in a noun; you can say the queen of England’s
crown but not *the boy who ran quickly’s prize. We can assume that this requifement is

a matter of morphology (the s ending only goes on nouns) and thus that the PS rules
need not account for it.




86 English Phrase Structure  Chap. 4

Pronouns and proper names do not take determiners, nor do they normally take
adjectives or prepositional phrases. To account for pronouns and proper names, we
introduce two more PS rules:

NP —  Pronoun
NP —  Name

along with the appropriate lexical entries such as:

Pronoun  — I, me, you, he, him, she, they ...
Name —  Joe, Bill, Jack, Mary, Fido, Felix . ..

Exercise 4.3.1.1

Construct a parser that implements all the PS rules discussed in this section, except for
possessives. Use it to parse the noun phrases birds, the dog, the gray cat, the dog in the
garden, and the young boy with the telescope.

This parser must construct a parse tree as a Prolog structure. Your instractor will test
it with queries such as:

?- np(Structure, [the, gray, cat] L)
Structure = np(d(the) .adj (gray) ,n(cat))

Remember that there is nothing in DCG notation that corresponds to the parentheses
indicating optionality in a PS rule. You will have to work out, and implement, all the
alternative rules in full.2

In most of the subsequent exercises in this chapter you will add rules to this parser.
It will ultimately contain over 100 DCG rules.

Debugging a parser: If your parser fails to accept a phrase, first check that your rules
include all the necessary vocabulary. For example, if

?- np(Str, [the,young,boy,with,the,telescope] 01D

fails, check that the, young, boy, with, and telescope are in your DCG rules.
Next try to parse parts of the phrase. For example, try

?- np(Str, [the,young, boy], []).
(which, according to the grammar, should also be a noun phrase) and
?- pp(Str, [with, the,telescopel, [1).
This will help you localize the rules that you have written incorrectly.

Sometimes you can render VP —» V(NP)into DCG as ‘vp --> v, (np ; [1).’ where (mp ; D
means ‘accept an NP or a null constituent.” But if you use this trick while building tree structure in the way
described here, your trees will be littered with unmotivated null constituents.
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Once the parse succeeds, you’re not through; you must verify that it gives the right
structure, and that if more than one parse is possible, all the structures are consistent with
the grammar.

4.3.2 Multiple Adjective Positions

A noun can take an indefinite number of adjectives in front of it, as long as the meanings
add up to something coherent. For example:

the big dog

the big green dog

the big hairy green dog

the big fat hairy green dog

the big noisy fat hairy green dog

This, then, calls for a recursive rule. But the complete NP is not recursive; the other
parts of the NP (particularly the determiner) are never multiple.

The solution is to introduce another level of constituent structure between N and
NP. Jackendoff calls it N, N, or N!; in Prolog we’ll call it n1. Then in place of

NP — D (Adj) N (PP)

we can write:

NP — DN'(PP)
N!'' — AdjiN!
N!' - N

and get structures like the one in Figure 4.3.

NP
D N!
Adj N!
Adj Nt
N
' Figure 4.3  Recursion on the NI
constituent allows NPs to have multiple

the big black dog adjectives.
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Exercise 4.3.2.1

Revise your parser to allow multiple adjectives and parse the big black noisy dog. It should
still parse the gray cat and all the other examples from before, but now it should give
structures that include N!.

4.3.3 Adjective Phrases

An adjective is not aiways a single word——sometimes it is a phrase, such as very big.
The N! rule introduces adjective phrases, not just adjectives:

the very big dog
the very big, surprisingly fat dog
the very big, slightly underfed, annoyingly messy dog

So we need to change the first N! rule to
N!' —  AdjP N!
and define adjective phrase (AdjP) as:
AdiP  —  (Degree) Adj

where Degree — very, slightly, extremely, etc.
Longer AdjPs come after the noun, not before it, and AdjPs that follow the noun
can inclide prepositional phrases and other complements after the adjective:

a dog [adip similar to the first one ]

We will not account for these here.
Exercise 4.3.3.1

Modify your parser to incorporate the rules just introduced, and to parse the examples given
(the very big dog, etc.). It should still parse all the examples from previous exercises, but
now the structures should include AdjP where applicable.

4.3.4 Sentences within NPs

An NP such as the fact that birds fly has an S within it, preceded by the COMPLEMENTIZER
that. So we need to modify the NP rule again, and also define a new constituent S! (more
commonly called S, pronounced “S-bar”): .

NP — D},N1 (PP) (S')
St — CompsS
Comp — that

We also need to add the familiar rules:
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S — NPVP
VP - V(NP)

This will account for structures such as those in Figure 4.4.

S
NP VP
D N? st 14 NP
‘ /\ .
/\
N Comp NP vP Pronoun
/\Nl ‘
D | %
proe g
|
the fact that ] birds fly surprised him
(@
S
NP VP
Pronoun \%4 NP
D N1 PP st
NP  Poss N P NP Comp S
Name D N! NP VP
N D N! 1%
N
nobody  believed John ’s statement at the meeting that 2 birds fly

(b

Figure 4.4 Sentences that contain complex noun phrases.
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Exercise 4.3.4.1

Modify your parser to parse the sentences:

The fact that birds fly surprised him.
The students challenged the quite unexpected statement at the conference that birds fly.

Why do you get two parses for the second sentence? Is it genuinely ambiguous or is the
grammar overgenerating?

4.4 THE VERB PHRASE

4.4.1 Verbs and Their Complements

Verbs take many kinds of complements after them. For example:

Verb  Type of complement(s) Example

slept None John slept.
chased NP The dog chased the cat.
gave NP + NP John gave us the information.
gave NP+ [ppto... ] John gave the information to us.
said S! John said (that) birds fly.
seemed AdjP John seemed very old.
wanted 0 VP John wanted to leave.

In Chapter 3 we looked briefly at the problem of SUBCATEGORIZATION, i.e., ensuring
that a verb is not used with the wrong kind of complement. For now, we will ignore
subcategorization and simply assume that the input to the parser is grammatical.

To a first approximation, then, we need at least the following rules for VP:

VP - V(NP)(PP)(NP)(PP)(S})
VP > VAdP
VP - VtoVP

and we need to introduce a null complementizer:
Comp — @

This accounts for the structures in Figure 4.5, among others. But the first VP rule is far
from satisfying, and we will return to subcategorization in Chapter 5.

Exercise 4.4.1.1

Based on the PS rules introduced on this section, draw tree diagrams for the following
sentences:

Birds flew into the garden.
Max announced at the meeting that the birds looked silly.
The birds wanted to leave.
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Figure 4.5 Verbs with various kinds of complements. (Continues on page 92.)
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Figure 4.5 cont. (Continues on page 93.)
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N

/\
NP vpP

\ T

Name 1% AdjP
/\
Degree Adj
Max looked very silly
® Figure 4.5 cont.

Exercise 4.4.1.2

Extend your parser to parse the sentences in Figure 4.5 and the sentences in the previous
exercise. You need not include all expansions of the VP rule, as long as you include enough
to parse the sentences here, and you are prepared to add more as needed later on.

4.4.2 Particles

A PARTICLE is a preposition without an object. Particles occur only with specific verbs
which require them, such as look up or throw out. The same verbs also occur without
the particles, with somewhat different meanings.

When present, the particle occurs in either of two positions, as shown in Figure 4.6
on page 94. Note that Joe looked up the tower is ambiguous (he either looked up the
tower in a book, or looked upward along the tower), and that this ambiguity is structural;
Figure 4.7 on pages 94 and 95 shows the two structures.

Exercise 4.4.2.1

Extend your parser to handle particles and to parse the sentences in Figures 4.6 and 4.7,
giving both structures for Joe looked up the tower. You need not provide for all the com-
binations of particles with other parts of the VP; just add enough VP rules to parse the
sentences needed for this exercise.

4.4.3 The Copula

The copuLA, or verb of being (is, are, etc.), takes an NP or AdjP as complement, as
shown in Figure 4.8 on page 95.

Note (added 2008): In Fig. 4.8 we treat Copula as a separate syntactic category. There is a good
case for treating the copula as a V with a particular subcategorization.

Exercise 4.4.3.1
Extend your parser to parse the sentences in Figure 4.8.
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Figure 4.7 Up can be either an ordin;
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ary preposition or a particle. (Continues on
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Figure 4.8 The copula takes an NP or AdjP as complement.

95



96 English Phrase Structure  Chap. 4

4.5 OTHER STRUCTURES
4.5.1 Conjunctions

Most occurrences of coordinating conjunctions such as and and or seem to be governed
by a rule

X > XComX

where X is any kind of constituent whatever. That is, any two constituents of the same
kind can be joined by a conjunction to make a larger constituent. Figure 4.9 shows some
examples.

The rule X — X Conj X cannot be expressed directly in DCG notation; instead it
must be replaced by a set of rules

NP — NP Conj NP
AdjiPp - AdjP Conj AdjP

NP
NP Conj NP
Name Name
Fido and Felix
(@
‘ Vv
Vv Conj \4
hates and detests
(b)
AdjP
AdjP Conj AdjP
Degree Adj Degree Adj
very hot and quite dry

©

Figure 4.9 Conjunctions such as and take two constituents of the same kind and make
them into a larger constituent.
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Figure 4.9 cont.
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PP — PP Conj PP
VP — VP Conj VP
V. — VConjVv

and so on. But even these rules aren’t DCG parsable; they cause loops, as noted in
Chapter 3, where a trick for handling them was suggested.

Challenging as this is, it is still not the whole story about conjunctions. Hudson
(1988) points out that in a sentence like

John drank [, coffee at breakfast | and [, tea at lunch 1.

the conjoined elements, coffee ar breakfast and tea at lunch, are not constituents (Hud-
son 1988). Apparently, this sentence arises through a process of ELLIPSIS (omission of
understood material) from the complete sentence

[s John drank coffee at breakfast | and [s John drank tea at lunch 1.
or at least the properly conjoined VP
John [vp drank coffee at breakfast ] and [vp drank tea at lunch ]

There is no standard approach to parsing ellipsis phenomena such as these, but you
should be aware of them.

Exercise 4.5.1.1

Draw a tree for John drank coffee at breakfast and drank tea at lunch. Now try to do the
same thing with the second occurrence of drank omitted. What goes wrong?

Exercise 4.5.1.2

Why doesn’t a loop arise when parsing correlating (discontinuous) conjunctions such as
both. .. and and either. .. or?

Exercise 4.5.1.3

Add rules to your parser to parse the following sentences:

It is both very warm and quite dry.
John drank both coffee and tea.

Do not attempt to handle any conjunctions other than both. . . and.
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4.5.2 Sentential PPs

Traditional grammar recognizes numerous SUBORDINATING CONJUNCTIONS, such as be-
fore, after, when, whenever, and because, which allow a whole sentence to modify
(describe) some part of another sentence. Examples:

I saw him after [s he left 1.
The discussion after [s he left | was surprising.

Here after he left modifies saw and discussion respectively.

Emonds (1976:172-176) and Radford (1988:134-137) argue convincingly that
these “subordinating conjunctions” are not conjunctions at all, but rather prepositions
of a special kind that take S rather than NP after them. Figure 4.10 shows the kind of
structures that this entails.?

There are two main reasons to view “subordinating conjunctions” as prepositions.
First, some of them are prepositions (of the kind we are already familiar with) and can
equally well take an NP instead of an S. Examples:

after [s he left |

The discussion { after [np the meeting ]

} was interesting.

I saw him { before [s he left ] } .

before [np the meeting |

Second, sentential PPs occur in the same positions as ordinary noun-phrase-containing
PPs. We have just seen them at the ends of NPs and VPs. Both kinds of PPs also occur
at the beginning of the sentence:

{ After he left

. the discussion continued.
After the meeting

This meéns that our familiar rule S — NP VP must be rewritten as:
S — (PP)NPVP

and the rules for PP become:

PP — PNP
PP — PSS

There is now a subcategorization problem with P because some Ps take only NP; some,
such as whenever, take only S; and some take either NP or S. For the moment, we will
ignore this.

3For theoretical reasons the object of P may turn out to be not S but § with the null complementizer. In
parsing, this makes no difference.
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S
/\
NP vpP
| /'\
Pronoun \%4 NP PP
/\
Pronoun P S
/\
NP VP
|
Pronoun \%4
|
I saw him after he left
@
S
/\
NP VP
D N1 PP Copula AdjP
| T |
N P S Adj
/\
NP VP
|
Pronoun \%4
|
the discussion after he left was surprising
(b)

Figure 4.10 Examples of PP containing S.

Exercise 4.5.2.1

The sentence I heard about the discussion after the meeting is structurally ambiguous; after
the meeting modifies either discussion or heard. Draw trees for its two structures.

Exercise 4.5.2.2

Extend your parser to handle the sentences in Figure 4.10, as well as:
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he left

. the discussion was surprising.
the meeting

After {

Do not attempt to account for subcategorization of prepositions.

4.6 WHERE PS RULES FAIL
4.6.1 Adverbs and ID/LP Formalism
Like adjectives, adverbs take degree specifiers in front of them. The rule that accounts
for this is

AdvP — (Degree) Adv

and the resulting structures include

AdvP AdvP
| N
Aldv De,rgree Adv
quickly very quickly

and the like.
The odd thing about AdvPs in English is the variety of positions in which they
occur. For example:

Quickly he chased him into the garden.
He quickly chased him into the garden.
He chased him quickly into the garden.
He chased him into the garden quickly.

There is good evidence that the first two of these adverb positions hang from S
and the latter two hang from VP, so that the structures are as shown in Figure 4.11.

This means that our S and VP rules need to be interspersed with optional AdvPs.
Here is a stab at reformulating these rules:

S — (AdvP) (PP) NP (AdvP) VP
VP - V(NP)(AdvP) (PP) (NP) (AdvP) (PP)(S!) (highly dubious!)

This is unsatisfying; the VP rule, in particular, is a real mess. Even though we’ve left
out particles, the VP rule has seven optional elements and is therefore apparently the
equivalent of 128 different DCG rules! In reality it’s not quite that complex, because
some of the options are equivalent to each other; for instance, if you choose VP — V NP,
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N
T
AdvP NP vp
’ /,\
Adv Pronoun v NP PP
| N
Pronoun P NP
N
D Nt
|
N
|
quickly he chased him into the garden
(@
S
/[\
NP AdvP vpP
‘ /’\
Pronoun Adv \4 NP . PP
/\
Pronoun P NP
/\
D N1
|
N
|
he quickly chased him into the garden

(b)

Figure 4.11 Adverbs occur in many different positions in the English sentence.

it doesn’t matter whether you choose the first NP or the second. Still, the whole thing
is unwieldy.

What we would really like to say is that adverbs are a fundamentally different
kind of thing than nouns or verbs. Instead of occupying fixed positions, AdvPs can go
anywhere as long as they hang from an S or VP node and do not interrupt another con-
stituent. That is, instead of having many different positions, the AdvP has an unspecified
or “free” position.
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S
/\
NP \7
— TN
Pronoun \4 NP AdvP PP
| TN
Pronoun Adv P NP
A
D N!
|
N
|
he chased him quickly into the garden
s ©
/\
NP . VP
N
Pronoun \%4 NP PP AdvP
| N |
Pronoun P NP Adv
/\
D N1
|
N
|
he chased him into the garden quickly

@

Figore 4.11 cont.

But this is something that PS rules can’t express. Phenomena like adverb placement
led Gazdar, Klein, Pullum, and Sag (1985) and many others to replace PS rules with
ID/LP ruULES. In ID/LP formalism, a rule such as

VP — V, NP, PP, AdvP

says only that VP immediately dominates V, NP, PP, and AdvP; that’s why it’s called
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an ID (IMMEDIATE DOMINANCE) rule. It doesn’t say in what order the V, NP, PP, and
AdvP occur. The order is established by one or more LP (LINEAR PRECEDENCE) rules
such as:

V < NP
V < PP
NP < §!

which say that V precedes NP, V precedes PP, NP precedes S', and so on (when they hang
from the same node). This is only a partial specification of the ordering. Constituents can
occur anywhere as long as they don’t violate any LP rules. So if no position is specified
for AdvP, AdvP can occur anywhere. ID/LP parsers have been developed (Kilbury 1984,
Shieber 1984, Barton 1985, Leiss 1990).

Exercise 4.6.1.1

Extend your parser to handle all the sentences in Figure 4.11, plus the same sentences with
very quickly in place of quickly. You need not add rules for expansions of VP that do not
occur in these sentences.

Exercise 4.6.1.2
Convert the ID/LP rules

VP — V, NP, PP, AdvP
V < NP

V < PP

NP < PP

into the complete set of equivalent PS rules.
4.6.2 Postposing of Long Constituents
There is a general tendency in English for long constituents to be POSTPOSED (placed at
the very end of the sentence). This is obviously a practical thing to do; it lets the hearer
parse as many constituents as possible, thereby obtaining context, before tackling the
longest one.

Here’s an example. One reason our VP rule is so complicated is that we must
parse both

Max [vp revealed [np the fact ] [pp at the meeting ] 1.

and

Max [vp revealed [pp at the meeting | [xp the amazing fact that birds fly ] ].



Sec. 46  Where PS Rules Fail 105

That is, we have both VP — V NP PP and VP — V PP NP. The NP comes at the end
if it is exceptionally long.

If we could explain in some other way why the long NP comes at the end of the
sentence, we could simplify the VP rule. And indeed this seems like something we could
do in ID/LP formalism: specify “the longest daughter of VP comes last” and let this take
precedence over the other LP rules. So far, so good.

But there are cases where constituents are actually broken up in order to put a
long constituent last. In transformational grammar this is called EXTRAPOSITION FROM
NP (Radford 1988:448-456). Some examples:

A new book came out about the anatomy of dinosaurs.

A problem arose that nobody expected.

John called people up who were from Boston.

Here about the anatomy of dinosaurs clearly modifies book, not came out, and the situ-
ation is analogous in the other two sentences.

The structures that we would like to assign these sentences are shown in Fig-
ure 4.12. The trouble is, these structures aren’t trees. They contain DISCONTINUOUS
CONSTITUENTS that cannot be generated by PS rules.

The standard analysis of these sentences is to say that the PS rules generate them
with the constituents unbroken, and another kind of rule, called a TRANSFORMATION, then
moves a constituent to the end. On this analysis, the DEEP (untransformed) structure of

A problem arose that I hadn’t foreseen.

is

[np A problem that I hadn't foreseen | arose.

and the postposing of that I hadn't foreseen is a separate process.

To parse sentences with extraposed constituents, the parser will have to be ready,
after parsing what appears to be a whole sentence, to pick up an additional constituent
at the end and insert it in the proper place. The extraposition grammars of Pereira
(1981) were designed partly to solve this problem. Extraposed constituents can also be
handled by using features to pass information from one node to another as we did with
wh-questions in Chapter 3.

Exercise 4.6.2.1

Suggest, in some detail, a way of parsing the sentences discussed in this section. You need
not actually implement it.

4.6.3 Unbounded Movements

We saw in Chapter 3 that, in questions, the word who always appears at the beginning
of the sentence, and exactly one NP is missing later on. It is exactly as if [nyp who ] had
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§ .
NP VP
D N! 1% Particle PP
VN TN
Adip N! P NP
| T
Adj N D Nt PP
N
N P NP
N
D N1
|
N
|
A new book  came out about the anatomy of ] dinosaurs
(a) .
S
/\
NP vpP
SN —
D N! 14 st
} /\
N Comp S
A
NP VP
/\
Pronoun \4 NP
|
A problem arose that nobody expected ]
)

Figure 412 Long constituents are postposed, often breaking up the larger constituents
in which they belong.
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S
NP VP
Name \4 NP Particle
D N! st
N Comp
Copula

Name

John called [ people up who [ were from Boston

©
Figure 4.12 cont.
been moved from its original site to the beginning. Examples:

Who said Bill thought Joe believed Fido barked? (Max.)

Who did Max say |, thought Joe believed Fido barked? (Bill.)
Who did Max say Bill thought |, believed Fido barked? (Joe.)
Who did Max say Bill thought Joe believed |, barked? (Fido.)

Here |, represents the missing NP.

This phenomenon, called wh-movement, occurs not only in questions, but also in
exclamations such as

What a noise Max said Fido made ,!

and in relative clauses (sentences modifying NPs) as in:

the boy who(m) Fido chased |, into the garden
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Wh-movements can be nested, as in this double relative clause:

the boy who(m) the girl who(m) we saw |, liked
N— e

But they cannot cross over each other; at any point, the parser can assume that the most
recent wh-word will definitely correspond to the next missing NP.

Wh-movement is an UNBOUNDED movement. This means that there can be any
amount of structure between the original position of the moved word or phrase and the
place it ends up. Thus PS rules cannot account for it. In Chapter 3 we parsed wh-
questions with the aid of features; this is a standard approach (cf. the ‘slash features’ of
Gazdar, Klein, Pullum, and Sag 1985).

Some structures are ISLANDS, which means that even unbounded movements cannot
move material out of them. Conjoined structures of all types are islands. For example,
even though

You saw Max and who(m)?

is grammatical (in a suitable context), it is not possible to perform wh-movement and
get

*Who did you see Max and ,?

because Max and who(m) is an island. Islands were discovered by Ross (1967).

Exercise 4.6.3.1

Look back at the feature-based parser for wh-questions that we built in Chapter 3. Describe
a way to add the rule

NP —  both NP and NP

to this parser in such a way that [xp both NP and NP ] will be treated as an island.
4.6.4 Transformational Grammar

Rules that rearrange the structure of a tree are called TRANSFORMATIONS. They were
introduced by Chomsky (1957), who experimented with PS rules and found them inad-
equate. Chomsky was the founder of modern generative grammar, and his introductory
account of it is still worth reading.

Once transformations were introduced, linguists used them to account for all sorts
of grammatical regularities, including:

o Agreement (Chapter 3) and case marking (Chapter 5), now handled with features.
o The relation between active and passive sentences such as:

)
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The dog eats the food.
The food is eaten by the dog.

Nowadays these are accounted for by lexical rules (Chapter 9) which create, from
every verb such as eat, an adjective such as eaten with the appropriate meaning.

e Various alternative word orders, such as That he succeeded surprised me versus It
surprised me that he succeeded, which are now treated as alternatives in the PS
rules.

Transformational grammar does not lend itself to parsing. The reason is that every
transformation is a tree-to-tree mapping and thus cannot be undone without knowing
the tree structure. So the parser has to determine the tree structure before undoing any
transformations. And if transformations are necessary to account for tree structure, this
18 impossible.

In practice, transformational parsers rely on a COVERING GRAMMAR, a set of PS
rules that account for the structures after the transformations have applied. But if the
sentence can be parsed with the covering grammar, then there is usually no need to
undo the transformations—the parser can proceed with other kinds of analysis imme-
diately. Because of this, transformational grammar is seldom used in natural language
processing. ' ' '

Since the 1970s, the trend has been to replace transformations with more specialized
mechanisms, such as features. Emonds (1976) gives a good summary of transformational
grammar as it was in its heyday. In Chomsky’s current theory, transformations remain
as a means of accounting for certain movements, but they are defined in terms of more
abstract principles, particularly GOVERNMENT (case assignment, Chapter 5) and BINDING
(an abstract relation between specific positions in the sentence, such as the missing NP
position and the moved wh-word). For an introduction to government and binding theory,
see Sells (1985).

Exercise 4.6.4.1

Implement, with DCG rules, a covering grammar for a grammar that contains the rules

S —> NPVP
NP — DN
VP — V(NP)(PP)
PP — PNP
D - the
N —  dog, cat, garden
V. —  slept, barked
P — in

plus a transformation that optionally moves PP to the beginning of the sentence (as in In the
garden the dog barked). Note that a covering grammar does not undo the transformation; it
merely parses a structure in which the transformation may have applied.
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4.7 FURTHER READING

There is no place you can go to look up “the rules of English” for computer implemen-
tation, because linguists do not yet agree on what form these rules should take. One of
the most comprehensive modern generative grammars is that of Gazdar, Klein, Pullum,
and Sag (1985); the classic study of phrase structure is Jackendoff (1977); and the best
introductory textbook, for our purposes, is probably Radford (1988). The classic hand-
book by Stockwell, Schachter, and Partee (1973) relies so heavily on transformations
that it does not lend itself well to parser implementation.

The best way to extend a parser is to feed it some actual text and see where it breaks
down, then add rules as needed. For guidance on how to analyze particular syntactic
phenomena, see Matthews (1981) on the nature of syntactic structure, and Huddleston
(1988), and Quirk et al. (1973, 1985) for detailed descriptions of English. These are
DESCRIPTIVE handbooks of grammar; they contrast sharply with PRESCRIPTIVE handbooks
designed for teaching English to foreigners or teaching native speakers to write more
clearly. Prescriptive handbooks are almost useless to the parser builder.

Among dictionaries, Hornby (1989) is especially useful because it specifies the
kinds of complements required by each verb or noun.




CHAPTER 5

Unification-Based Grammar

5.1 A UNIFICATION-BASED FORMALISM

5.1.1 The Problem

In Chapter 3, we added FEATURES (arguments) to the nodes in a phrase-structure grammar
in order to do a lot of different things. We used features to account for agreement and case
marking, build syntactic trees and semantic representations, and even undo movements.

But we never put all these techniques together into a single grammar. Nor did we
examine the role of features in contemporary linguistic theory. In this chapter we will
do those things. In the process, we will develop an extension to Prolog that will make
it much easier to use features in a grammar.

5.1.2 What is UBG?

A UNIFICATION-BASED GRAMMAR i$ any grammar that:

e encodes information in features and their values;

e gives values to features only through unification, and not through any other kind
of computation.

111
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By this criterion the grammars that used features in Chapter 3 were unification-based.
So are many of the grammars used in present-day theoretical linguistics. It’s time to
look at features from a theoretical viewpoint.

Recall, for example, three rules from Chapter 3:

s --> np(Number,nominative), vp(Number) .
vp (Number) --> v (Number), np(_,accusative) .
np (Number, Case) --> pronoun (Number, Case).

In unification-based grammar, the same rules are written:

NP

VP
S — num. X . X]
I: case: nom :l [ num-
VP \% NP
[ num: X ] - [ num: X ] [ case: acc ]
NP Pronoun

|: case: C :I [ case: C ]
Here every node except S has a FEATURE STRUCTURE, i.e., a set of features and values.
The fact that S has no features is purely accidental; a more complete grammar would
assign features to the S node as well.

Fig. 5.1 shows a syntactic tree annoted with features. Whenever a PS rule applies,
the feature structures in the rule have to unify with the corresponding feature structures
in the tree. For example, the first rule requires the NP and VP to have the same number
and requires the NP to have case: nom.

Unification-based grammar is a relatively new development. Features are not; they
go back to traditional grammar and are used freely by Chomsky (1965) and others. But
unification did not appear on the linguistic scene until the 1980s.

Further, UBG is not, in itself, a theory of grammar. Rather, it is a framework
on which some (not all) theories of grammar are based, just as vector arithmetic is a
framework for many theories in physics. Some theories of grammar that use various kinds
of UBG are Functional Unification Grammar (FUG, Kay 1985, stemming from work in
the late 1970s), Lexical-Functional Grammar (LFG, Bresnan 1982), and Generalized
Phrase Structure Grammar (GPSG, Gazdar, Klein, Pullum and Sag 1985).

In this chapter we will develop a UBG formalism similar to that of Shieber (1985),
but somewhat adapted to bring it closer to Prolog. We will then implement UBG in
Prolog and use it to analyze a variety of phenomena in English.

5.1.3 How Features Behave

Features get where they are through several different processes, and although we are going
to handle all of these processes through unification, we should start by distinguishing
them and giving them names.
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S
NP VP
case: nom ]
': num: pl } [ num: pl ]
D N Vv NP
[ - ] [ nums pl ] subcat: 2 case: acc
i p P num. pl num: sg
Pronoun
case: acc
num. sg
The dogs scare him

Figure 5.1 Example of a tree containing features.

Some features are properties of each word as listed in the dictionary. That is, the

LEXICAL ENTRY of a word supplies many of its features. Provisionally, we can think of
a lexical entry as a simple PS rule such as:

Pronoun
l: num: pl ] —  them

case: acc
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This says that them is a pronoun with plural number and accusative case. We’ll explore
lexical entries further in Chapter 9.

Some features are put in place by AGREEMENT RULEs—tules that require a feature
on one node to match a feature on another. For example, a plural noun requires a plural
determiner (you can’t say *one dogs), and a singular noun requires a singular determiner,
More concisely, the noun and the determiner AGREE IN NUMBER. Here is a rule that
makes them do so:

NP D N
[ num: X ] - [ num: X ] [ num: X ]

This is, of course, just the PS rule NP — D NP with features added. Here the X in the
feature structures is a variable, and this rule requires it to have the same value in the
three places where it occurs.

Some features get into the tree by ASSIGNMENT; that is, the grammar requires
them to have particular values. For example, the direct object of the verb has to have
accusative case, so that I see him is grammatical and *I see he is not. Here is a rule that
assigns accusative case to the object:

NP

[ case.: acc ]

VP —» 'V

This is just VP — V NP with case: acc added in the right place.

Finally, some features get into place by PERCOLATION. That is, some of the features
on a phrase are copies of the features of the main word in the phrase. For example, if the
main verb in a VP is plural, then the VP itself is plural. The plural feature “percolates
up” from the V to the VP. Here is the VP rule just given, but with percolation of the
num feature added:

VP |4 NP
[ num: X ] - [ num: X ] [ case: acc ]

Notice that the VP gets its number from the verb, not from the object.
Exercise 5.1.3.1

For each of the features in Figure 5.1, indicate whether the occurrence of the feature is best
explained as coming from the lexical entry or from assignment, agreement, or percolation.
Give justification for your claims.

5.1.4 Features and PS Rules

Before the 1980s, generative grammars treated agreement, percolation, and the like as
processes performed by transformational rules. That is, the PS rules would generate
the tree and then the transformations would copy features from place to place. Today,
however, the leading view is that all features can be accounted for by just one operation—
UNIFICATION—which applies along with each PS rule.
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Recall that the purpose of each PS rule is to legitimize a particular part of the tree.
For example, the rule

NP — DN
legitimizes the structure:

NP

N

D N

A grammar generates a tree if and only if every part of the tree is legitimized by some rule.
The features on each node in the tree have to be unified with the features on the
corresponding node in the rule. For example, the rule

NP N D N

requires the structure [num: X] to be unified with the feature structures of the NP, D,
and N. Thus it ensures that the NP, D, and N have matching num features, and thereby
accomplishes both agreement and percolation. The actual value of the num feature,
singular or plural, is supplied in this case by one or more lexical entries. It could also
have been supplied by some other rule assigning a num value to the whole NP.

Exercise 5.1.4.1

Using the NP rule just given, plus the lexical entries

D the

N N d
[ num: pl ] 08S
draw the complete tree for [yp the dogs ].
5.1.5 Feature-Structure Unification

The features in a feature structure are identified only by name, not by position. Thus

,: person: 2 ] and [ number: plural :,

number: plural person: 2

are the same feature structure.
Two structures can be UNIFIED if they can be combined without contradiction. For

example,
. a b
a:b and @b unify to give cd | .
c d e f e f
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This is much like Prolog unification; the main difference is that uninstantiated features
are simply left out. Thus there is no need for an “anonymous variable.” Variables with
names, however, work the same way as in Prolog. For example,

a b
ab a X . . )
l:c._ d j| and [e: X ] unify to give l: ‘cz.. Z :| .

The second feature structure doesn’t give values for a and e, but it imposes a requirement
that the values of @ and e must be the same. This is a lot like what happens if you unify
f(b,d,_) with £ (X,_,X) in Prolog. As in Prolog, we will stipulate that

like-named variables are the same if and only if they occur in the same struc-
ture or the same rule.

Feature-structure unification can, of course, fail. In such a case the grammar rule
requiring the unification also fails, i.e., cannot apply. For example, the feature structures

a b a: d .
|: o d ] and [ e f :| do not unify

(the unification fails) because a cannot have the values b and d simultaneously in the
same feature structure.

A big advantage of unification—one that we’ve already exploited in Prolog—is
that it’s ORDER-INDEPENDENT. If you unify a set of feature structures, you’ll get the
same result no matter what order you unify them in. This means that it is often possible
to use a single unification-based grammar with many different parsing algorithms. It
doesn’t matter which unifications get done first, as long as all the prescribed unifications
are eventually performed. This gives great freedom to the programmer who is designing
a parser.

The order-independence of unification also eliminates a vacuous question that arose
in transformational grammar. Consider subject-verb agreement, for example. Does the
number feature get copied from the subject onto the verb, or from the verb onto the
subject? Obviously, it makes no difference. Yet a transformational grammar has to
make the copying go in one particular direction; a unification-based grammar merely
says that the number features of the subject and of the verb are equal.

Exercise 5.1.5.1

Unify the following feature structures, or indicate why the unification fails.

L |: number: sg ] and [ number: sg :|
case: acc person: 3

number: N case: nom
2. |: ) i| and person: 3
case: nom

number: pl
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case: C person: 3
3. | person: P and number: pl
number: sg case: acc
a b aY
4. | ¢ Y and c: X
e: X e: X
a b a'Y
5.l e Y and c d
e:f e X

Exercise 5.1.5.2

Here are three feature structures:

] [e]

117

[57]

Unify the first (leftmost) structure with the second and show the result; then unify that with
. the third. Then do the same thing again, taking the structures in the opposite order (right to

left).

5.2 A SAMPLE GRAMMAR

5.2.1 Overview

Now it’s time to build a real, working unification-based grammar (working in the sense
that the rules will fit together properly and generate sentences; we won’t put it on the
computer just yet). This grammar will be based on the PS rules:

S — NPVP
VP — V(NP)
NP —  Pronoun
NP — DN

Pronoun —

D —  the, a, two

N —

V —

o Number agreement of subject and verb;
e Number agreement of determiner and noun;

he, him, it, they, them

dog, dogs, cat, cats
bark, barks, scare, scares

To this we will add features to enforce five constraints:
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¢ Assignment of nominative case to subject;
e Assignment of accusative case to object;
¢ Subcategorization to distinguish verbs that do and do not take objects.

Exercise 5.2.1.1

Show why each of the five constraints just mentioned is needed. That is, for each constraint,
give a sentence (with tree) that is generated by the PS rules but is ungrammatical because
it violates the constraint.

5.2.2 Lexical Entries
First, the lexical entries. The pronouns are simple:

Pronoun
[ case: nom :, — he

num. sg

Pronoun
[ case: acc :, —  him

num: sg

Pronoun
[ num: sg ]

Pronoun

case: nom —  they
num: pl

Pronoun

case: acc — them
num: pl

Notice that iz has the same form in both nominative and accusative (you can say both iz
scares him and he scares it); we capture this fact by simply leaving out its case feature.
Now for the nouns. Ideally, we’d like to have a rule that adds -s to the singular
form of each noun to make the plural. That will have to wait until Chapter 9; in the
meantime we will simply list both the singular and the plural form of each noun:

N d
[ num: sg ] 8
N —  dogs

[ num: pl ]
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N t
[um:sg] =
N
[ — ] — cats

Notice that nouns are not marked for case.
Determiners agree with nouns in number; that is, some determiners are singular
and some are plural.

D

[ num: sg ] - 4
D t

[ num: pl ] - wo

The goes with both singulars and plurals, so we leave its number feature unmarked:
D —  the

Next, the verbs. We use a feature called subcat(egorization) to distinguish verbs
that take an object, such as scare, from verbs that don’t. Like nouns, verbs are marked
for number, but this time the -5 is absent in the plural. We ignore person agreement (/
scare, you scare vS. he scares).

Vv
[ num: sg ] —  barks

subcat: 1 J

|4
num: pl —  bark
subcat: 1 |

\%

num: sg —  scares
subcat: 2

v
num: pl —  scare
subcat: 2

Exercise 5.2.2.1

Write lexical entries (in the same form as those above) for she, elephant, every, all, chase,
and chases.

5.2.3 Phrase-Structure Rules
The phrase-structure rules are simple. Consider first the rule:

NP D N
[ num: X] [ num: X] [ num: X]
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This accomplishes number agreement of D and N, as well as percolation of the number
feature of the N up to the NP. (Or down from the NP to the N, depending on your point
of view; in UBG it doesn’t matter.)

The pronoun rule is even simpler, except that it has to percolate case as well ag
number:

NP Pronoun
case: C — case: C
There are two VP rules and the subcat feature determines which one any particular
verb takes:

vp v
. — subcat: 1 (for verbs without objects);
[ num: X ] e X
1%
vp — subcat: 2 NP (for verbs with objects).
[ num: X ] nume X [ case: acc ]

The second rule assigns accusative case to the object.
Finally, the S rule assigns nominative case to the subject and enforces subject-verb
number agreement:

NP Ve
S — case: nom - x
num: X [ . ]

In this grammar, the S node itself has no features. As mentioned earlier, this is purely
accidental; a more complete grammar would give features to the S, but in this grammar
there happen to be none.

Exercise 5.2.3.1

Add feature information to the rule PP — P NP so that, in combination with appropriate
lexical entries, it will generate

[pp fOT him ]
[pp fO?‘ them 1
but not

[pp for he ]
[pe for they ]

Write your rule in a form suitable to be added to the grammar we are developing.
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5.2.4 How the Rules Fit Together

Unification-based rules work equally well when applied bottom-up, top-down, or in any
other order. To work out by hand how the rules generate a particular sentence, it is
probably easiest to proceed bottom-up.

Consider the sentence Two dogs bark. Does our grammar generate it? To find out,
first look at the lexical entries for the three words, and fill in the part of the tree that

they supply:

D N v
[ num. pl ] [ num: pl ] subcat: 1
) ) num: pl
Two dogs bark.

Nex\t, group D and N together into an NP. Note that the NP — D N rule requires NP,
D, and N to have the same num feature. So far, no problem:

NP
[ num: pl ]
D N | v
ol -l subcat: 1
[num. p ] [num p ] num: pl
Two dogs bark.

Now we need a VP. The verb has subcat: 1. Only one of the two VP rules matches
a verb with this feature, namely the rule VP — V, which percolates the num feature up
from V to VP:
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NP vpP
[ num: pl ] [ num: pl ]
D N ! v
<l ] [ num: vl ] subcat: 1
[num. p :p num: pl
Two dogs bark.

Finally, § — NP VP requires the NP and VP to agree in number (which they do), and
assigns case: nom to the NP (which has no visible effect because nouns are not marked
for case). Here is the complete structure:

S
NP VP
num. pl . . '
[ case: nom :l [ . pl ]
|4
p N subcat: 1
[ num: pl ] [ num: pl ] num: pl
Two dogs bark.

Voila—the rules generate the sentence.

It makes equal sense to work top-down, starting with S — NP VP, except that
the process involves more suspense because there are lots of variables that don’t get
instantiated until the last moment. For example, applying the rules S — NP VP, then
NP — D N, and then VP — V, you get
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S
NI; VP
case: nom
b N b . 01
[ num: X ] [ num: X ] [ ,A;I,i,,fatx :l

and when you get to the lexical entries, X finally gets instantiated as sg or pl.

This illustrates a key advantage of unification-based grammar. You don’t have
to know the values of the variables in order to manipulate them. As long as the right
variables are made equal to each other, and the variables eventually get instantiated,
everything comes out correct.

Exercise 5.2.4.1

By working bottom-up, determine whether the grammar generates each of the following
sentences. Show your steps. If the sentence turns out not to be generated, show precisely
where the unification fails.

1. The dogs scare him.
2. It barks him.
3. The cats bark.

Exercise 5.2.4.2

By working top-down from § — NP VP, show why the grammar does not generate each of
the following sentences. That is, show your steps, and point out the feature conflict when
it occurs.

1. It scares he.

2. It scare him.

5.3 FORMAL PROPERTIES OF FEATURE STRUCTURES

5.3.1 Features and Values

A feature structure is a set of FEATURES (ATTRIBUTES) and VALUES. It contains at most
one value for each feature. For example,
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a: b

c: d
contains the value b for the feature a, the value d for the feature ¢, and no value for the
feature e. But

a: b
!
[ o c ] (wrong!)
is not a feature structure, because it does not give a unique value for q.

A feature is simply a name; no more, no less. A value can be either an atomic
symbol (like a Prolog atom or number), or another feature structure. Some examples:

a:
b . pred: chases
d: e semantics:
tense: present
| g
c: . person: 3
A syntax:
h. k1 number: sg

Nested feature structures like these allow features to be grouped together. For
example, it is often convenient to group all the features that percolate into a structure
called agr(eement).! Then instead of

Pronoun
pers: 3
num: sg
case: acc

— him

we would write:

Pronoun

pers: 3

agr: | num: sg
case: acc

(The pronoun will also have other features that are not in the agr group; we just haven’t

seen them yet.) Then—here’s the simplification—it becomes possible to percolate pers,
num, and case all at once by just percolating agr, like this:

NP Pronoun
[ agr: X ] g [ agr: X ]

Here is a full description of feature structure unification as we now know it:

It is not entirely clear whether case belongs in the agr group. For now, it’s convenient to put it there.
In English, case percolates but is not involved in agreement.



Sec. 5.3 Formal Properties of Feature Structures 125

e To unify two feature structures, unify the values of all the features.

o If a feature occurs in one structure and not in the other, simply put it into the
resulting unified structure.

o If a feature occurs in both structures, unify its values:

e To unify values that are atomic symbols, check that they are equal; otherwise
the unification fails.

e To unify a variable with anything else, simply make it equal to that thing.

o To unify values that are feature structures, apply this whole process recursively.

Here are a couple of examples:

a: b
a: b c: |:d'. ¢ il . . d:e
|: o Xi| and . fe unify to give | ¢ [ Fe }
he i P

a'y a.p
ap b: q . . b: g
|: o Xi| and Tav] unify to give [dp
|, f 2 I ¥
Without changing the computational power of the formalism, we can in fact allow

values to be Prolog terms of any type. This is so because any Prolog term can be
translated into a feature structure. For example, £ (a,b) could become

functor: f
argl: a

arg2: b
and the list [a,b, ¢] could be rendered as:

first: a
first: b

rest: first: ¢
rest: .
rest: nil

So we will frequently use Prolog terms as a substitute for feature structures, wherever
this is more convenient. Naturally, we presume that Prolog terms unify by ordinary
Prolog unification.

Exercise 5.3.1.1

Unify each of the following pairs of feature structures, or indicate why the unification fails:

L [Zgb"’] ] and [ij[(f'g] }
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. syntax: [ category: noun ] and [ syntax: [ number- X] ]

number: plural )
. semantics. [ number: X ]
Semantics: [ pred: dog ]

5.3.2 Re-entrancy

Feature structures are RE-ENTRANT. Fortunately, this is a property we are familiar with
from Prolog. What it means is that if two features have the same value, their values are
the same object, not merely two objects that look alike.

To take a Prolog example, unify f(X,X) with f (a(b) ;). The result is
f(a(b),a(b)). But the important thing is that the result doesn’t contain two a(b)’s;
it contains two pointers to the same a (b). That is, its tree structure is something like

f

rather than:

Feature structures work the same way. If you unify

[gﬁi] and  [p:[ab] ]

then you get a structure where p and g have the same value, not Just two identical-looking
values. We will often write this as
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p: [ ab ]
q: [ ab ]

but if we do so, something important is lost. To make it perfectly clear that the two
instances of [a:b] are really one structure, we can give it an identifying number and write
it only once, thus:

g

Here the first [1] serves as a label for the structure [a: b]. By writing [1] a second time,
we indicate that the same structure is also the value of another feature.

We will use this notation when it is absolutely necessary to show that a structure
is re-entrant. For the most part, however, re-entrancy will be easy to understand from
context, especially if you are familiar with Prolog.

Here is a case where the notation with boxed numbers is helpful. Suppose we’re
grouping agreement features into a structure called agr as proposed a couple of sections
back, and now we want to construct an § — NP VP rule such that:

e the NP and VP share all their agr features, i.e., agree in person, number, and
whatever else is relevant; and

o the NP has the agr feature case: nom.

In effect, we want to combine the two rules

NP VP

5 = [ agr: X] [ agr: X]

NP

[ agr. [ case: nom ] ]

VP

S -

into one. The trouble is that if we give the NP a feature written as agr: X, as in the first
rule, there’s no good way to refer to something within agr, as is necessary in the second.
Boxed numbers come to the rescue. We can simply write:

NP VP

[ agr: [7][ case: nom | | [agr: [1]

This means: The agr features of the NP and of the VP are to be unified with each other,
becoming a single structure known as [1]. In addition, [1] must unify with [case: nom].
This has the side effect of giving case: nom to the VP, which is harmless because verbs
are not marked for case (though it does suggest a reason for not putting case in the agr

group).



128 Unification-Based Grammar ~ Chap, 5

Exercise 5.3.2.1

Unify the following pairs of feature structures. Use boxed numbers to indicate all re-
entrancy. For example,

TZ:&(] and  [a [b:c] ]  unify giving [Z;'I%[b-‘c]]_

[a: X
L | b X] and [a: [p: q] ]

Le X

f'a: X a: [p.' Y]
2. | b: Y:l and

Lo X b‘[e:f]

5.3.3 Functions, Paths, and Equational Style

A PATH is a description of where to find something in a nested feature structure. For
example, in the structure

q:r

the path p : ¢ : d leads to the value e.

In mathematics, a PARTIAL FUNCTION is a function that yields a value for some
arguments but not for others. We can view a path as a partial function which, given a
feature structure, may or may not return a value. For example, in the structure above,
D :c:d has the value e, and g has the value r, but p :z:y has no value.

This suggests a different way of writing unification-based grammar rules. Instead
of using variables in feature structures, we can specify that the values of certain paths
have to be equal. I call this “equational style.” For example, instead of

NP

' VP
S — pers: P pers: P
case: nom ’
we can write
S — NPVP

(NP pers) = (VP pers)
(NP num) = (VP num)
(NP case) = nom
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That is, the NP’s pers equals the VP’s pers, and the NP’s num equals the VP’s num, and
the NP’s case equals nom. This is the notation used by the computer program PATR-II
(Shieber 1985).

We are about to develop an extension of Prolog called GULP in which both con-
ventional and equational styles can be used. Here are two ways of writing the above
rule in GULP:

s --> np(pers:P..num:X..case:nom), vp(pers:P..num:X).

s --> np(NPfeatures), vp(VPfeatures),
{ NPfeatures = pers:P, VPfeatures = pers:P,
NPfeatures = num:X, VPfeatures = num:X,
NPfeatures = case:nom }.

In both versions, np and vp each have a single Prolog term as an argument. In the first
version, each of these arguments is a feature structure. In the second, the arguments are
variables (NPfeatures and VPfeatures) which must then be unified with several
feature structures; for example, NPfeatures is unified, in succession, with [pers: P],
[num: X], and [case: nom]. This won’t work in ordinary Prolog, of course, but GULP
translates notations such as case:nom into structures that unify in the desired way.

Crucially, both GULP and PATR-II allow you to use paths. For example, in PATR-
I1, you could describe

NP

[ agr. [ case: nom ] ]
by saying (NP agr case) = nom. In GULP, you could say that NP has the feature
agr:case:nom.

Exercise 5.3.3.1
Identify all the paths in

a b
e d: e
D: e
h:i
q:r
and give their values.
Exercise 5.3.3.2
Express
NP 1%

[ agr: [ case: nom ] ] [ agr: [1] ]

in PATR-II equational style. (Hint: You will need to mention the path NP agr case in one
of the equations.)
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5.4 AN EXTENSION OF PROLOG FOR UBG
5.4.1 A Better Syntax for Features

So far we have implemented features in Prolog as arguments to nodes in DCGs. This
works well as long as there are only a few features. Clearly, however, a wide-coverage
parser for a human language will have many features, perhaps dozens of them. Most
rules mention only a few features, but argument positions have to be provided for every
feature so that terms will unify properly. It is easy to end up with grammar rules such as

s{_,_,_,_,Ts,_,_,s (Treel,Tree2),_ , , ) --»
np(_,_,_,_,_,N,Pers,Treel,_,_, ),
vp(_,_,_,_,Tns,N, Pers,Tree2,_,_, ).

which are hard both to read and to type correctly.
To make features less cumbersome we need to do three things:

e Collect all the features into feature structures. Then each node will have only one
argument, a feature structure.

e Develop a convenient notation for writing feature structures in Prolog.
e Somehow get feature structures to unify properly.

The notation for feature structures is not too hard. All that is necessary is to define the
infix operators ‘:’ and ‘. .’ and write

case: nom
person: P

sem- ': pred: bark:l

argl: fido

ascase:nom. .person:P..sem: (pred:bark. -argl:fido). Thatis, ‘:’ joins
a feature to a value, and *. .’ joins one feature-value pair to the next2 The value
of a feature can be any Prolog term, or another feature structure. This is known as
GULP notation because it was first used in a program known as Graph Unification Logic
Programming (Covington 1989). Fig. 5.2 shows further examples of GULP notation.

The next question is how to get feature structures to unify. There are two possi-
bilities:

e We could write our own unifier that will handle feature structures written in GULP
notation; or

2By using colons, we make the Prolog module system unavailable, but this is 6nly a minor limitation; a
different character could easily be used. Some Prologs may require you to use something other than the colon.
In Arity Prolog 4, a blank is required before each left parenthesis within a feature structure.
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[num: sg] ' = num:sg
[ num: sg
subcat: 2 = num:sg..subcat:2..tense:present
_ tense. present
Tap
b:
?d'p = a:p..b:g..c:(d:p..e:f)
B a: b
e d: e
p: | fg = p:l(a:b..c:{d:e..f:g)..h:i)..q:r
L A i
| g F

Figure 5.2 Examples of GULP notation.

e We could write a translator that will convert GULP feature structures into something
that the ordinary Prolog unifier handles in the desired way.

Johnson and Klein (1986) and others have taken the first approach; here we take the
second.

All we really have to do is map names of features onto positions in a list. For
example, if case, person, and number are the only features in our grammar, we can
represent each feature structure as a list

[C,P,N]

where C stands for the case, P stands for the person, and N stands for the number. Then
in order to unify

case: nom case: nom
and
person: 3 number: sg

we simply unify [nom,3,_] with [nom, _, sg] and everything comes out right.

So far, so good. Our translator will read a Prolog program, scan it for GULP
feature structures, and convert them all into lists with each value in the right position.
To keep these lists from being mistaken for ordinary lists in the translated program, we
will mark them with the functor g_/1; the resulting structure will be called a g_-list.
For example:

case:C..person:P..number:N translatesto g_([C,P,N])
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Every list will be long enough to accommodate all the features in the grammar; this
means that in most lists, many positions are never instantiated. For example:

case:C..number:N translatesto g_([C,_,NI1).

This assumes that case, person, and number are the only features in the grammar. If any

other features were ever used, there would have to be positions for them in every list.
Crucially, the order of the feature-value pairs does not matter; case:C. .number:N *

translates to exactly the same thing as number :N. .case:C.

Exercise 5.4.1.1

Write each of the following feature structures in GULP notation.

L | mem sg
" | case: acc

2. | person: 3
L num: pl

[ case: C
3. | person: P

[ case: nom ]

| num: sg
T a: b
d: e
4. fg
c: i j
L [k.— 1]
[ . pred: chases
semantics:
5 tense: present
’ l: person: 3 :I
SYRtax:
num: sg

Exercise 5.4.1.2

Lists are not necessarily the best internal representations for feature structures; they are just
the simplest to build. Suggest some alternative data structures that could be used instead,
and indicate how they would work.

5.4.2 Translating a Single Feature Structure

What we want to build is a translator program, called Mini-GULP, which will accept
Prolog programs (including DCGs) that use GULP notation, and will translate the fea-
ture structures from GULP notation into g_-lists while leaving the rest of the program
unaltered. 4
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The translator program will begin with the op declarations

- op(600,xfy,":7).
- op(601,xfy,"..").

so that as soon as it is loaded, all subsequent Prolog code, including input accepted
through read/1, can use GULP notation.

At the beginning of the program to be translated, we will ask the user to supply a
set of schemas that map features onto positions in a list. Some examples:

g_schema (case:X, (X, _,_1).
g_schema (person:X, [_,X,_1).
g_schema (number:X, [_,_,X]).

Creation of schemas could easily be automated, and in the full GULP system, it is. Here,
however, we’re trying to keep things simple.

Each schema then provides the translation of one feature-value pair, except that
‘g_/1’ is left out. For example:

?- g_schema (number:plural,What) .
What = [_,_,plural]

To translate a series of feature-value pairs, such as
case:nom. .person: 3. .number:plural

all we need to do is translate the individual feature-value pairs, then unify the translations
with each other, and add ‘g_/1’ at the beginning. That is, we need to obtain the

translations

[nom, _,_]
[.3,_1]
[_,_,plural]

and unify them, thereby obtaining [nom, 3,plural], and then add ‘g_’ giving
g_([nom, 3,plurall). So far, then, the translator needs two clauses:

o

g_translate (+FeatureStructure,-g_(List)) (FIRST VERSION)
Translates FeatureStructure to internal representation g_(List).

oo

oe

Case 1: A single feature-value pair

oe

g_translate(F:V,g_(List)) :-
g_schema (F:V,List) .
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% Case 2: A series of feature-value pairs

oe

g_translate(First..Rest,g (List)) :-
g_translate(First,g_(List)),
g_translate(Rest,g_{(List)).

This produces the translations that we want, such as:

?- g_translate(case:nom. .number:plural,What) .
What = g_([nom,_,plurall)

The alert reader will have noticed that all functors that have special meaning for Mini-
GULP begin with ‘g_’ to avoid conflict with anything in the user’s program.

Exercise 5.4.2.1

Suppose a Prolog neophyte says, “I don’t understand how g_translate adds ‘g_’ to the
translation. There isn’t a step in it to do that.” How would you respond?

Exercise 5.4.2.2

Get g_translate working. (Remember that the op declarations go in the translator
program.) Then supply schemas for a grammar containing the features case, number, person,
sem, pred, and argl and give the translations produced by g_translate for:

case:nom
case:acc..person:?2

person:2..case:acc

number:singular. .sem: (pred:chases. .argl:fido) . .person:3

What is unsatisfactory about the last of these?

Exercise 5.4.2.3

Modify g_translate so that if the input contains a feature for which there is no schema,
an error message will be produced. (This modification is very helpful in doing the subsequent
exercises, and in working with Mini-GULP generally. Everyone misspells a feature or leaves
out a schema sooner or later.)

5.4.3 Translating Terms of All Types
So far, our translator has two serious limitations:

e It won’t translate general Prolog terms, only feature structures.
e It won’t accept a feature structure within a feature structure.

For Mini-GULP to be useful, both of these problems have to be corrected. Let’s tackle
the first one first.
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The user’s program is nothing more than a series of terms, most of which have
the principal functor ‘:-> or ‘~->’. What we want to do is search through each term,
translating all the feature structures wherever they occur, but otherwise leaving things
unchanged. From this perspective, we need to look for four kinds of terms, not just
two:

o Feature-value pairs. We already know how to handle these, except that we need to
translate the value, rather than just inserting it into the list unchanged. That will
take care of feature structures within feature structures.

e Sequences of feature-value pairs joined by ‘. .’. Just translate all the feature-value
pairs and merge the results, as we’re already doing.

e Structures. Break the structure up into functor and arguments, recursively translate
all the arguments, then reassemble the result.

e Variables and atomic terms. Leave these unchanged. Actually, we check for these

first, because a variable would match anything, and also because these involve the
least work.

Note that this is fully recursive. A feature structure can occur inside any other kind
of term, and any other kind of term can occur within a feature structure. Here are the
clauses to implement it:

% g_translate(+FeatureStructure,~g_(List)) (SECOND VERSION)
% Translates FeatureStructure to internal representation g (List).

Case 1: A variable or atomic term

o0 oe

g_translate(X,X) :-
(var (X) ; atomic(X)), !.

oe

Case 2: A single feature-value pair

o

g_translate(F:V,g_(List)) :-

f
’

g_translate(V,TranslatedVv),
g_schema (F:TranslatedV, List) .

oo

Case 3: A series of feature-value pairs

oe

g_translate(First..Rest,g_(List)) :-
1

g_translate(First,g_(List)),
g_translate(Rest,g_(List)).

o

Case 4: A structure

oe

g_translate(Structure,Result) :-
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Structure =.. [Functor|Args],

1

g_translate_aux(Args,NewArgs), % translate all args
Result =.. [Functor|NewArgs]. :

Here g_translate_aux/2 translates, in succession, all the elements in a list, like
this:

g_translate_aux([T|Terms], [NewT|NewTerms]) :-
g_translate(T,NewT),
g_translate_aux(Terms, NewTerms) .

g_translate_aux([],[]).

Exercise 5.4.3.1

Why doesn’t g_translate need another clause to deal with lists?

Exercise 5.4.3.2

Get g_translate working and use it to translate the same feature structures as in Exercise
5422

5.4.4 Translating While Consulting

We want the translator to accept programs like that shown in Fig. 5.3. We will write
a procedure called g_consult to load such programs into memory, translating GULP
notation into g_-lists as it does so. The g_consult procedure will read terms from a
file one by one and process them, thus:

e If the term is end_of_file, stop. (Recall that this is what read returns when
it hits end of file.)

o If the term is a g_schema, assert it into memory.

e If the term is a grammar rule (with principal functor ‘-->’), translate it, then pass
it through the DCG rule translator and assert the result into memory.

o If the term is anything else, translate it and then assert it.

The top level of this processing is easy:

oe

g_consult (+File)
% Reads clauses from File, translating as appropriate.

g_consult (File) :-
see(File),
repeat,
read (Term) ,
g_consult_aux(Term), % handle it appropriately
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e

DCG parser for the grammar in Section 5.2.

To be processed by Mini-GULP.

Demonstrates number agreement, case assignment,
and verb subcategorization.

o0 o

oe

g_schema(case:X, [X,_,_1).
g_schema (num: X, [_.X,_1).
g_schema (subcat:X, [_,_,X]).

pronoun{case:nom. .num:sg) --> [he].
pronoun{case:acc..num:sg) --> [him].
pronoun (num: sqg) --> [it].
pronoun(case:nom. .num:pl) --> [they].
pronoun(case:acc..num:pl) --> [them].

n(num:sg) --> [dog]; [cat].
n(num:pl) --> [dogs];[cats].

a(_) --> [the].
d(num:sg) --> [al.
d{num:pl) --> [two].

--> [barks].
--> [bark].
--> [scares].
--> [scare].

num:sg. .subcat:
num:pl. .subcat:
num:sg. .subcat:
num:pl..subcat:

NN

)
)
)
)
np (num:N) --> d(num:N), n(num:N).

np (num:N. .case:C) --> pronoun{num:N..case:C).

vp(num:N) --> v{subcat:1..num:N).
vp (num:N) --> v(subcat:2..num:N), np(case:acc).

s --> np(case:nom..num:N), vp(num:N).

Figure 5.3 Example of a program to be input to Mini-GULP.

Term == end_of_file,
L,
seen.
g_consult(_) :- % 1f something went wrong in previous clause
seen, ’

write(’'g_consult failed.’),
nl.
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All the decision-making is relegated to g_consult_aux, which looks like this:3

g_consult_aux(end_of_file) :- !.

g_consult_aux(g_schema (X,Y)) :-

!
E

assertz (g_schema(X,Y)).

g_consult_aux((X-->Y)) :-

1
.

g_translate( (X-->Y),Rule),
expand_term(Rule, NewRule), % DCG translator
assertz (NewRule) .

g_consult_aux(Term) :-
g_translate(Term, TranslatedTerm),
assertz (TranslatedTerm) .

Now Mini-GULP is ready for use. The normal way to use it is as follows:

1. Get into Prolog.
2. Type ‘?- consult(filename).’ to load Mini-GULP into memory. This executes
the op declarations so that GULP syntax becomes legal.

3. Type ‘?- g_consult(filename).” to translate and load your program.
4. Type whatever queries your program expects. For example,
‘2~ s([two,cats,bark], []1).” would be appropriate for the program in
Figure 5.3. '
Exercise 5.4.4.1

What happens if you g_consult the same file twice in succession?

Exercise 5.4.4.2

Get g_consult working and use it to translate and run the program in Figure 5.3. (Your
translator program should now contain the op declarations, followed by g_translate,
g_consult, and g_consult_aux.)

Exercise 5.4.4.3

Why is the second clause of g_consult necessary?

5.4.5 Output of Feature Structures

There’s still one thing missing: a neat way to output feature structures. This is important
because many of our parsers will report their results by building a feature structure.

3In ALS Prolog, expand_term/2 is called builtins :dcg-expand/2, and you have to consult (dcgs)
to make it available.
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Sticking with the program in Figure 5.3, let’s take a simple example. If you want
to find out the features of [yp him ], you can type

?- np(Features, [him], []).
but you’ll merely get
Features = g_{([acc,sgl)

which doesn’t give the names of the features. In a large grammar with dozens of features,
output in this format would be almost useless.

One way to get the computer to report names with the features is to use g_schema
like this:

?- np(g_(Features), [him], (1), g_schema (FV,Features).
FV = case:acc ;

FV = num:sg ;

no

Notice that ‘g_’ has been added in the first argument of np, so that Features is now
just a list. Now we get the names and values of all the features, one at a time, as
alternative solutions to the g_schema subgoal.

That’s still rather clumsy, but we can do better. The built-in predicate setof will
gather all these alternative solutions into a list, like this:

?- np(g_(Features), [him], []), setof (FV,g_schema (FV,Features),L) .
L = [case:acc,num:sg]

That’s almost what we need. The problem is that, in most feature structures in most
real grammars, most of the features are uninstantiated, so in a larger grammar you’d get
something like

[person:_OOl,case:acc,gender:_002,tense:_OOB,num:pl,sem:_004]

which is hardly ideal.
Let’s develop a predicate g_write/1 that outputs feature structures in readable
form. Basically, here’s what g_write will do:

e Outputa g_-list by converting it into a series of feature-value pairs (using g_write
recursively to write the values, and skipping the ones whose values are uninstan-
tiated).

o Output anything else by calling write/1.

The alert reader will notice that this is only partly recursive: g write can handle
feature structures inside feature structures, and other terms inside feature structures, but
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not feature structures inside other kinds of terms. For most purposes, this is enough, and
it greatly simplifies the program. Here, then, is g write:

oo

g_write{+g_(List))

Produces legible output of a feature structure in internal form.
Assumes all necessary schemas are present.

Imperfect; Iimitations are noted in text.

o0 0P o

g_write(g_(Features)) :-
I
write (' ("),
setof (FV, g_schema (FV, Features) ,FvVList),
g_write_aux(FVList),

write(’)’).

g_write(X) :-
write(X).

g_write_aux([]) :-
|

g_write_aux([_:V|Rest]) :-
var (V) ,

I
o

g_write_aux(Rest).

g_write_aux([F:V|Rest]) :-
1
write(F),
write(’:’),
g _write(V),
write(’.."),
g_write_aux(Rest).

g _write_aux(X) :-
write(X).

This is good enough to output most feature structures, but (apart from not being com-
pletely recursive) it has a couple of flaws: it writes an extra ‘. .’ after the last feature-
value pair, and it fails to correctly write a variable or an empty list (and thus is not a
perfect substitute for write). But at least we can now do things like this:

?- np(Features, [shel, []), g write(Features).
(person:3. .number:singular..)

and thus we will be able to look at the feature structures produced by more complex
grammars.
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Exercise 5.4.5.1

Get g_write working. A good way to test it is to write a program that consists of a set
of schemas such as:

g_schema (person:X, [X,_,_1).
g_schema (number:X, [_,X,_1).
g_schema (sem:X, [, _,X1).

followed by some clauses such as:

testl :- g _write(person:1).
test2 :- g_write(person:3..number:plural).
test3 :- g_write(sem: (person:3)..number:singular) .

Then load the program through g_consult in order to turn all the feature structures into
g_-lists, and see if g_write translates them back correctly when testl, test2, etc.,
are executed.

Exercise 5.4.5.2
Modify g_writesothat *?~ g write([]). willoutput‘[]’and ‘?- g_write(X).’
will output a representation of an uninstantiated variable (something like _001, or whatever
your Prolog normally produces).

Exercise 5.4.5.3

Modify g_write so that there will not be an extra ‘. .’ after the last feature-value pair.
Note that the last feature-value pair to be printed is not necessarily the last one in the g_-list,
because features with uninstantiated values are skipped.

5.5 UBG IN THEORY AND PRACTICE
5.5.1 A More Complex Grammar

It’s time to look at, and implement, a more elaborate unification-based grammar. Here
is a grammar based on the four PS rules:

NP —  Fido, Felix, he, him, they, them
V  —  chase, chases, sleep, sleeps

VP — V(NP)
S —= NPVP

To these we will add features to handle the following things:

e Case assignment (he chases me, not *him chases I);
o Subject-verb agreement (Fido sleeps, not *Fido sleep);
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e Verb subcategorization (Fido chases Felix, not *Fido sleeps Felix);

e Semantics (we will build a primitive semantic representation of the sentence—too
primitive for practical use, but adequate to illustrate some techniques).

All together, the features that we use will be agr, sem, num, case, pred, argl, arg2, and
subcat. So the parser has to start with a set of schemas:

g_schema (agr:X, [
g_schema (sem: X, [
g_schema (num:X, [
g_schema (case: X, [
g_schema (pred: X, [
g_schema(argl:X, [ X,
g_schema(arg2:X, [_,_, _,_,_,_, %, _
g_schema (subcat:X,[_,__,_,_,_,_,_,X

Now for the grammar itself. Let’s look first at the lexical entries for the NPs.
These endow each NP with a semantic representation of sorts, plus a group of agr
features (number, and case if case is marked).

NP
agr: [ num: sg ] —  Fido
sem: fido

| —

NP
agr: [ num: sg ] —  Felix
sem: felix

| m—|
L

NP
agr: [num 58 :l —  he

case: nom
sem: he

NP

num: sg .
agr: —  him
case: acc

sem. him
NP

agr: [ num.: pl —  they
case: nom |

sem: they

NP

agr: l: . pl —  them
case: acc

—
L

sem: them
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They go into DCG with GULP straightforwardly:

np (agr: (num:sg) . .sem: fido) --> [fido].
np(agr: (num:sg) ..sem: felix) --> [felix].
np(agr:(num:sg..case:nom)..sem:he) --> [he].

np (agr: (num:sg. .case:acc) ..sem:him) --> [him].
np(agr:(num:pl..case:nom)..sem:they) -~> [they].
np(agr:(num:pl..case:acc)..sem:them) --> [them].

As before, we have two subcategories of verbs:

v
[ subcar: 1
agr: [ num: sg ]
sem: sleeps
|4
[ subcat: 1
agr: [num: pl ]
sem: sleep J
|4
subcat: 2
agr: [ num: sg ]
sem. chases
v
[ subcat: 2

agr: [ num. pl ]
| sem: chase J

—  sleeps

—  sleep

— chases

| I

—  chase

These, too, go into GULP straightforwardly:

v(subcat:1..agr: (num:sg) .sem:sleeps) --> [sleeps].
v(subcat:1..agr: (num:pl) .sem:sleep) --> [sleep].
v(subcat:2..agr: (num:sg) . .sem:chases) --»> [chases].
v(subcat:2..agr: (num:pl) .sem:chase) --> [chase].

Notice that our approach to semantics here is extremely naive—we’re just writing each
word itself in place of its semantic representation. This is enough to show that we can
get the symbols to come out in the right places; we’ll explore semantics in depth in
Chapters 7 and 8.

The VP rules must enforce subcategorization and, if there is an object, assign
accusative case to it. Here’s what they look like, in UBG and in GULP:
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VP v
. [ subcat: 1

l: agr: X ] — agr: X

sem: [ pred: P ] | sem: P

vP Voo NP
agr: X N [ subcat: 2 aor: [ case: acc ]
sem: pred: P agr: X ': & N W2 ' ! :l
" | arg2: A2 | sem: P | sem:
vp(agr:X..sem: (pred:P)) -->

v(subcat:1..agr:X..sem:P).

vp(agr:X..sem: (pred:P..arg2:A2)) -->
v(subcat:2..agr:X..sem:P),
np(agr: (case:acc)..sem:A2) .

Notice what these rules do. Besides enforcing subcategorization, percolating agr, and
assigning case to the direct object, they also build a semantic representation. The se-
mantics of the verb (P) and of the noun (A2) get combined into a structure representing
the semantics of the VP, such as

pred: chases
arg2: fido

if the VP is chases Fido. As you might guess, the S rule is going to add an argl, so that
Felix chases Fido will come out as:
. pred: chase
argl: felix

arg2: fido
The S rule itself takes the form
g NP vp
[ sem: [1] [ arel: Al ] ] —~>7 [ agr: [ case: nom ] :l l: agr: :|

sem: Al sem: m

Here the S has a single feature, sem, which is the same as the sem feature of the VP
except that it also has to unify with argl: Al (which is how the semantics of the subject
gets into it). NP and VP share all their agr features and are required to contain case:
nom. To express this rule in GULP, we have to use equational style:

s (Sfeatures) --> np(NPfeatures), vp(VPfeatures),
{ Sfeatures = sem:(argl:Al), NPfeatures = sem:Al,
Sfeatures = sem:S, VPfeatures = sem:S,
NPfeatures = agr:X, VPfeatures = agr:X,

NPfeatures = agr:case:nom 3.
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It’s also possible to use a style that is only partly equational, like this:

s(sem:8) --> np(agr:X..sem:Al), vp(agr:X..sem:3),
{ S argl:Al,
X = case:nom }.

1

Here the second line means, “In addition to the value that S already has, S must be
unified with argl:A1,” and likewise for X and case : nom.

Notice that, since the sem of the S and of the VP are unified with each other,
argl gets added to the sem of the VP as well as of the S. This is harmless and, in fact,
correctly reflects the fact that the meaning of the verb is incomplete until the meaning
of the subject is added. :

To parse a sentence, issue a query such as:*

?- s(Features, [felix,chases, fidol,I[1), g_write(Features).
(sem: (argl:felix..arg2:fido. .pred:chases))

All you’re doing here is invoking a DCG parser in the usual way and telling it to parse
[fido, chases, felix] and end up with []. The argument of s is Features, a
GULP feature structure which is then printed out by g_write. In this grammar, the
features of S contain a primitive semantic representation of the sentence.

You can equally well parse any other constituent, for example a VP, like this:

?- vp(Features, [chases, fido], []), _write(Features).
(agr: (num:sg) . .sem: (arg2:fido. .pred:chases))

This highlights an important fact:
Unification-based grammar is not sentence based.

In UBG, the sentence is just one of many constituents that can be described and parsed.
This contrasts sharply with transformational grammar, in which many transformations
apply only to the whole S, and the grammar does not correctly generate NPs, VPs, etc.,
unless they are embedded in their proper places in sentences.

Exercise 5.5.1.1

Draw trees (with features) for the following sentences generated by this grammar:
1. Fido chases him.

“The output as shown here assumes that the behavior of g-write has been cleaned up as suggested in
the exercises. Otherwise there will be a redundant *. ." at the end.
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2. They sleep.
3. He chases Fido.

In doing this by hand, it is probably best to work bottom-up. First write down the words
and apply the lexical entries. Then group the words into phrases, performing appropriate
unifications as you go.

Exercise 5.5.1.2

Get this grammar working, as a DCG parser, on your computer. Parse the three sentences
from the previous exercise, and give the features of the S.

Exercise 5.5.1.3

Modify this grammar so that every node has another feature, free, whose value is a repre-
sentation of the parse tree below it. This will work very much like the tree-building parser
in Chapter 3. Parse the same three sentences again and show the value of tree for S.

Exercise 5.5.1.4

Construct and implement a UBG to parse sentences such as
Who did Max say |, thought Fido barked?

(as in Section 3.4.5), constructing a representation of the tree in which who is associated
with (or moved into) the position of the missing NP.

5.5.2 Context-Free Backbones and Subcategorization
Lists

So far, every UBG that we’ve worked with has had a CONTEXT-FREE BACKBONE—that
is, if you strip away all the features, you get context-free PS rules.
Notice that the node labels themselves can be treated as features. Instead of

NP

case: nom
num: pl

cat: np
case: nom
num: pl

So far so good; the grammar still has a context-free backbone if every node in every rule
has a cat feature whose value contains no variables. (Normally the value of cat is an
atomic symbol such as np, but Jackendoff (1977) and Gazdar et al. (1985) explore what
can be accomplished by using feature structures there.)

we can write
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If we let cat be a variable, we pass into interesting territory. For one thing, we can
handle verb subcategorization by giving each verb a feature which is a list of complement
categories. Consider the rules:

cat: vp cat: vp .
[subcat: Y] e [subcat: (X | Y] } [ car: x]

[ cat: s ] - [ cat: np ] l: EZIZC;f [] jl

The first rule is effectively VP — VP X, where X comes from the subcat list of the VP.
It applies recursively, picking off values of X one by one until there are none left. Then
the second rule, S — NP VP, is allowed to apply.

With these rules we use lexical entries such as the following:

cat: vp
|: subcat: [] :l —  bark(s) (bark takes no complement)
cat: vp
[subcat: [np) ] —  chase(s) (chase takes one NP)

cat: vp . .
[ subcat: [np,np) ] = give(s) (give takes two NPs)

cat: vp
[ subcat: [np,s] ] - tell(s) (tell takes an NP and an S)

The resulting structures are as shown in Fig. 54.

This analysis follows a proposal by Shieber (1985 :27-32) except that we use Prolog
notation for lists, and the subject of the verb is not listed among its complements. Note
that a verb here is a VP, not a V. Note also that the elements of a subcategorization list
could be feature structures.

Unfortunately we can’t implement this with a top-down DCG parser. The obvious
Wway to approach it is to give all nodes the same label (let’s use z) and encode the real
node labels in the cat feature, rendering the first rule thus:

z(cat:vp..subcat:Y) --> z(cat:vp..subcat: [X]|Y]), z(cat:X).

The problem is that, parsing top-down, this rule creates an endless loop. In order to
parse z (cat:vp..subcat: [X|Y]), with X and ¥ uninstantiated, this rule simply
calls itself. We will return to this point in the next chapter.

Are subcategorization lists a good idea? That depends. To use subcategorization
lists is to claim (with Gross 1979) that verbs do not necessarily fall into classes and thus
that the complements of each verb must be listed in its lexical entry. Many generative
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[ cat: s ]

) cat: vp
[cat. hp ] |:subcat: 1 jl

cat: vp )
|: subcat: [s] :' [ cat: s ]

cat: vp . . cat: vp
[ subcat: [np,s] :I [ car: np ] [ cak: np ] [ subcat: [] ]

Max told Cous Fido barks

Figure 5.4 Tree showing how subcategorization lists work.

linguists, however, believe (with Gazdar et al. 1985) that verbs fall into a finite, though
possibly large, set of classes, and thus that subcategorlzatlon with numbers (as pointers
to classes) is more appropriate.

Exercise 5.5.2.1

Using the rules developed in this section, draw trees for the sentences:

1. Fido chases Felix.
2. Felix gives Fido a hard time.

Assume any other PS rules that are necessary.
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We could sum this up as:

D
case: nom oOr acc —  die
agr: [ num. pl ] or [ gen: fem ]

Here we’ve moved case outside the agr group, and or means “the actual value must
unify with one of these values, or the other, or both.” Features joined with or are called
DISJUNCTIVE features.

Obviously the Prolog unifier will not handle negative or disjunctive features. John-
son (1991) discusses them lucidly and offers an analysis based on classical logic, leading
to a unifier based on a theorem-proving algorithm.

Exercise 5.5.3.1

Using negative and/or disjunctive features, write concise lexical entries for the English

copula:
Singular Plural
1st person () am (we) are
2nd person (you) are (you) are

3rd person  (he, she, it) s (they) are

Exercise 5.5.3.2

If negative and disjunctive features were implemented, what should be the result of unifying
each of the following pairs of feature structures? Explain your answers and relate them to
what you know about logic.

L [ person: mot 3] and [ person: 2 |
2. [ person: Tor2| and [ person: 2 |
3. [azborc] and [a:cord]
4. [a:borc] and [a motd |

Exercise 5.5.3.3 (project)

Implement a unifier for negative and/or disjunctive feature structures. (See Johnson (1991)
for guidance.)




CHAPTER 6

Parsing Algorithms

6.1 COMPARING PARSING ALGORITHMS

So far, all our parsers have relied on Prolog’s built-in DCG translator as discussed
in Chapter 3. In this chapter we will implement a number of parsing algorithms for
ourselves. Parts of this chapter are heavily indebted to Pereira and Shieber (1987), who
describe several algorithms in more detail.

We will take advantage of the fact that, in Prolog, backtracking is automatic. This
makes Prolog ideal for implementing parsers and seeing clearly how they work. Most
parsers need to backtrack, but most programming languages make backtracking rather
hard to implement. This means that, in ordinary programming languages, the core of
any parser is likely to be hidden under a large, cumbersome backtracking mechanism.

All our parsers will use the grammar shown in Figure 6.1, except for certain rules
that particular parsing algorithms can’t handle.

6.2 TOP-DOWN PARSING

Let’s start with top-down recursive-descent parsing. This is the same algorithm used by
the DCG system, but we will implement it differently. The DCG system is a COMPILER for
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- NPVP

- DN

— NP Conj NP (not for top-down parsers)
— VNP (PP)

-~ PNP

— @  (not for bottom-up parsers)
—  the, all, every

—  near
—  and
— dog, dogs, cat, cats, elephant, elephants

Figure 6.1 A sample grammar for
—  chase, chases, see, sees, amuse, amuses experimenting with parsers.

grammar rules—it translates them directly into executable Prolog clauses. For example,
§ —  np, vp.
goes into memory as something like this:
s(LLL) :- np(L1,L2), vp(L2,L).

What we’re going to build is an INTERPRETER for grammar rules. Instead of
executing the rules directly, it will store them as facts in a knowledge base and look
them up as needed. Execution will be a little slower, but the parser will be much easier
to modify. We’ll represent PS rules as

rule(s, [np,vpl) .
rule(np, [d,n]).
rule(d, []).

and the like. Lexical entries will look like this:

word (d, the) .

word(n, dog) . word(n, dogs) .
word(n, cat) word(n, cats) .
word (v, Chase) word (v, chases) .

This format works conveniently with a variety of parsing algorithms; we’ll be able to
transfer the set of rules with little or no change from one parser to another.
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Now recall how top-down parsing works. To parse The dog barked, the parser, in
effect, says to itself:

— I’m looking for an S.

— To get an S, I need an NP and a VP.
— To get an NP, I need a D and an N.
— To get a D, I can use the ... Got it.

— To get an N, I can use dog ... Got it.
— That completes the NP.

— To geta VP, I need a V.

— To get a V, I can use barked ... Got it.
— That completes the VP.

— That completes the S.

To get a feel for what’s going on, try drawing the tree as you work through these steps.
Figure 6.2 shows the order in which a top-down parser discovers the various parts of the
tree.

NP VP

D N Vv NP

// Figure 6.2 Top-down parsing. The parser

discovers the nodes of the tree in the order
The dog chased cat  shown by the arrows.

Like the DCG system, our parser will work through the input string, accepting
words one by one. Let C represent the kind of constituent the parser is looking for
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at any particular moment (an S, NP, V, or whatever). Then the algorithm to parse a
constituent of type C is:

e If C is an individual word, look it up in the lexical rules and accept it from the
input string.

o Otherwise, look in the PS rules to expand C into a list of constituents, and parse
those constituents one by one.

Or, putting it into Prolog:

o0

parse (?C, ?S81,?S)

Parse a constituent of category C
starting with input string S1 and
ending up with input string S.

o 0P

oe

parse(C, [Word|S],S) :-
word (C,Word) .

parse(C,S81,S8) :-

rule(C,Cs),
parse_list (Cs,S1,8).

Here parse_list is just like parse except that it takes a list of constituents and
parses all of them:

parse_list([C|Cs],S1,8) :-
parse(C,S1,82),
parse_list(Cs,S2,8).

parse_list([],S,8).

That’s the whole parser. The query to parse a sentence looks like this:

?- parse(s, [the,dog,barked], []).
Notice that backtracking, where needed, occurs automatically.

Exercise 6.2.0.1

Get this parser working and equip it with all the grammar rules in Figure 6.1 except for
NP —> NP Conj NP. Use it to parse sentences such as All dogs amuse the elephant.

Exercise 6.2.0.2

In this parser, why is D — @ encoded as a PS-rule rather than as a lexical entry?
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Exercise 6.2.0.3

By adding arguments to nodes (as in Chapter 3, section 3.4), make the parser enforce
subject-verb number agreement and build a representation of the parse tree. (Hint: This is
easy; only the rules need to be modified.)

Exercise 6.2.0.4

(Not for courses that skipped Chapter 5.) Combine Mini-GULP with this parser. Account
for number agreement of subject and verb, and of determiner and noun, using GULP feature
structures.

Exercise 6.2.0.5

Modity the parser so that it always builds a representation of the parse tree, even with the
rules in their original form (without arguments). (Hint: Add extra arguments to parse and
parse_list.)

6.3 BOTTOM-UP PARSING
6.3.1 The Shift-Reduce Algorithm

A familiar limitation of top-down parsers is that they loop on LEFT-RECURSIVE rules of
the form A — A B (“to parse an A, parse an A and then ...”). Yet, as we saw in Chapter
4, such rules occur in natural language; one example is NP — NP Conj NP, where Conj
is a conjunction such as and or or.

One way to handle left-recursive rules is to parse BOTTOM-UP. A bottom-up parser
accepts words and tries to combine them into constituents, like this:

— Accept a word ... it’s the.

— TheisaD.

— Accept another word ... it’s dog.
— Dog is an N.

— D and N together make an NP.

— Accept another word ... it’s barked.
— Barked is a V.

— V by itself makes a VP.

— NP and VP make an S.

Again, try drawing a tree while working through these steps. (During most of the
process it will of course be a set of partial trees not yet linked together.) You’ll find
that you encounter the various parts of the tree in the order shown by the arrows in
Figure 6.3.
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VP
D N Vv NP
D N
START \ X
The dog chased the cat

Figure 6.3 Bottom-up parsing. The parser discovers the nodes of the tree in the order
shown by the arrows.

Because its actions are triggered only by words actually found, this parser does not
loop on left-recursive rules. But it has a different limitation: it cannot handle rules like

D— @

because it has no way of responding to a null (empty, missing) constituent. It can only
respond to what’s actually there.

The bottom-up algorithm that I’ve just sketched is often called SHIFT-REDUCE pars-
ing. It consists of two basic operations: to SHIFT words onto a stack, and to REDUCE
(simplify) the contents of the stack. Here’s an example:

Step  Action Stack Input string
(Start) the dog barked

1 Shift the  dog barked
2 Reduce D dog barked

3 Shift Ddog  barked

4 Reduce DN  barked

5 Reduce NP barked

6 Shift NP barked

7 Reduce NPV

8 Reduce NP VP

9 Reduce S
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So the shift-reduce algorithm is as follows:

1. Shift a word onto the stack.

2. Reduce the stack repeatedly using lexical entries and PS rules, until no further
reductions are possible.

3. If there are more words in the input string, go to Step 1. Otherwise stop.

A noteworthy feature of shift-reduce parsing is that it has no expectations. That
is, you can give it an input string and say, “What kind of constituent is this?” and get
an answer. You do not have to say “Parse this as an S” or “Parse this as an NP.”

Exercise 6.3.1.1

By hand, using the grammar in Figure 6.1, do shift-reduce parsing on the following input
strings: '

. the dogs amuse the elephants
. see the cat near the dog
. the dogs and the cats

R

the dogs the dogs the dogs
What happens in the last of these?
6.3.2 Shift-reduce in Prolog
Efficient shift-reduce parsing in Prolog requires a couple of subtle techniques. The first

of these is to build the stack backward. That is, shift words from the beginning of the
input string to the beginning of the stack, so that they end up in reverse order, thus:

Start: [ [the, dog, barked]
Shift: [the] [dog, barked]
Reduce: [dai [dog, barked]
Shift: [dog, d] [barked]

Reduce: [n,d] [barked]

Reduce: [np] [barked]

Shift: [barked, np] [1]

Reduce: [v,np] []

Reduce: [vp,npl []

Reduce: [s] []

This is efficient because all the action is at the beginning of each list; there is no need
to work all the way along a list to get to-the end.

The second subtlety is that the “reduce” step goes a lot faster if the rules, too, are
stored backward. For example,

NP - DN



158 Parsing Algorithms Chap.

goes into Prolog as
brule([n,dlXx], [nplX]).

Here brule stands for “backward rule.” The first argument, [n,d|X], directly matches-
the stack to which this rule applies, and [np | X] is what the stack becomes after reduc-
tion. With the rule written this way, unification does all the work.

So the “reduce” step in the parser is very simple: if there is an applicable rule, use
it, and then try to reduce again; otherwise leave the stack unchanged. The rest of the
parser is even simpler; the whole thing is shown in Figure 6.4.

Exercise 6.3.2.1
Using the parser in Figure 6.4, what is the effect of each of the following queries? Consider

all possible solutions.

?- parse([the,dog, chases, the,cat], [s]).
?- parse([the,dog, chases, the,cat], [What]).
?- parse([the,dog, chases, the,cat],What) .

Exercise 6.3.2.2

Why isn’t there a cut in the first clause of reduce?

Exercise 6.3.2.3

Extend the parser in Figure 6.4 to contain all the grammar rules in Figure 6.1 except for
D — @. Then use it to parse the input strings from Exercise 6.3.1.1.

Exercise 6.3.2.4

Add features to the shift-reduce parser to enforce subject-verb number agreement and: build
a representation of the parse tree. As before, only the rules need to be modified.

Exercise 6.3.2.5

(Not for courses that skipped Chapter 5.) Combine Miﬁi-GULP with this parser. Account
for number agreement of subject and verb, and of determiner and noun, using GULP feature
structures.

Exercise 6.3.2.6
What, exactly, does a shift-reduce parser do if it tries to use a rule like D —> @?
6.4 LEFT-CORNER PARSING
6.4.1 The Key Idea

Left-corner parsers are often described as bottom-up, but left-corner parsing is actually
a combination of bottom-up and top-down strategies. This technique was popularized



oe

Bottom-up shift-reduce parser

parse (+S, ?Result)
parses input string S, where Result
is list of categories to which it reduces.

o0 oe

oe

parse(S,Result) :-
shift_reduce (S, [],Result).

o0

shift_reduce (+S, +Stack, ?Result)
parses input string S, where Stack is
list of categories parsed so far.

o0

oe

shift_reduce(S, Stack,Result) :-
shift (Stack, S, NewStack, S1), % fails 1f S = []
reduce (NewStack, ReducedStack),
shift_reduce(S1l,ReducedStack,Result) .

shift_reduce([],Result,Result).

% shift (+Stack, +S, -NewStack, -NewS)
% shifts first element from S onto Stack.

shift (X, [HIY], [HIX],Y).
reduce(+stack,—Reducedstaék)

repeatedly reduces beginning of Stack
to form fewer, larger constituents.

oP oo

oe

reduce (Stack, ReducedStack) :-
brule(Stack, Stack2),
reduce (Stack?2, ReducedStack) .

reduce (Stack, Stack) .

% Phrase structure rules

brule([vp,nplX]1, [sIX]).

brule([n,dlX], [nplX]).

brule([np,vIX1, [vpIX]).

brule([Word|X], [Cat|X]) :- word(Cat,Word).

Q

% Lexicon

word(d, the) .

word(n,dog) . word(n,dogs) .
word(n,elephant). word(n,elephants).
word (v, chase) . word (v, chases) .
word (v, see) . word (v, sees) .

% etc.

Figure 6.4 Shift-reduce parser.
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by Rosenkrantz and Lewis (1970) and Aho and Ullman (1972:310-314), all of whom
attribute it to Irons (1961).

The key idea is to accept a word, figure out what kind of constituent it marks
the beginning of, and then parse the rest of that constituent top-down. The tree is thus
discovered starting at the lower left corner, as shown in Figure 6.5.

START \

S
VP
Vv NP
D N
Figure 6.5 Left-corner parsing. Note that
some nodes are visited twice, once workirig
dog chased the cat  top-down and once working bottom-up.

Like a top-down parser, a left-corner parser is always expecting a particular con-
stituent and therefore knows that only a few of the grammar rules are relevant. This can
give it an efficiency advantage over straight bottom-up parsing.

But like a bottom-up parser, the left-corner parser can handle rules like A — A B
without looping, because it starts each constituent by accepting a word from the input

string.

6.4.2 The Algorithm

The algorithm consists of two parts: accepting and identifying a word, and then com-
pleting the constituent.

To parse a constituent of type C:

1. Accept a word from the input string and determiine its category. Call its category
Ww.

2. Complete C. If W = C, you’te done. Otherwise,
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o Look at the rules and find a constituent whose expansion begins with W. Call
that constituent P (for “phrase”). For example, if W is Determiner, use the rule
NP — D N and let P be Noun Phrase.

e Recursively left-corner-parse all the remaining elements of the expansion of P.
(This is the top-down part of the strategy.)

e Last, put P in place of W, and go back to the beginning of step 2 (i.e., start
over trying to complete C).

All of this is easier to describe in Prolog than in English. Rules will be represented
as they were with our top-down parser:

rule(s, [np,vp]l).

rule(np, [d,n]). % etc.
word(n,dog). word(n,dogs).
word(n,cat). word(n,cats). % etc.

and so on. To tackle any constituent, the parser first accepts a word, then completes the
constituent, thus:

oe

parse (+C, +S1,-3)
Parse a constituent of category C
starting with input string S1 and
ending up with input string S.

o0 oo

o

parse (C, [Word!S2]1,S8) :-
word (W, Word) ,
complete(W,C,S82,8).
Again, we have parse_list, which parses a list of constituents:
parse_list([C|Cs],S1,8) :-
parse(C,S1,82),
parse_list(Cs,S2,8).

parse_list([],S,9).

The only nontrivial procedure is complete, defined as follows:

oe

complete (+W, +C, +S1, -S)
Verifies that W can be the first subconstituent
of C, then left-corner-parses the rest of C.

ov

o

complete(C,C,S,S). % if C=W, do nothing.

complete(W,C,S1,8) :-
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rule(P, [W|Rest]),
parse_list (Rest,S1,82),
complete(P,C,S82,S).

Exercise 6.4.2.1

Get this parser working with all the grammar rules from Figure 6.1 except D — .

Exercise 6.4.2.2

Add arguments to the nodes in the rules so that this parser will build a representation of the
tree and enforce subject-verb number agreement. (Easy—just copy the modified rules from
Exercise 6.2.0.3.)

Exercise 6.4.2.3

Modify this parser so that it builds a representation of the tree by itself, without requiring
any arguments in the rules.

Exercise 6.4.2.4

(Not for courses that skipped Chapter 5.) Combine Mini-GULP with this parser. Account
for number agreement of subject and verb, and of determiner and noun, using GULP feature
structures. (Easy—copy the rules from Exercise 6.2.0.4.)

Exercise 6.4.2.5

Modify complete so that it can handle null constituents in the portion of the tree that
it encounters top-down. Then modify the grammar so that the only rule expanding NP is
NP — D N PP where PP — 0. In your modified parser, rule (pp, [ 1) should allow the
parser to skip the PP without trying to parse it.

Exercise 6.4.2.6

What does the left-corner parser do when asked to “generate a sentence” by a query such
as the following?

?- parse(s,What, []).
Recall that this query does indeed generate a sentence with the original top-down parser.

6.4.3 Links f

As described so far, the left-corner parser is only parﬂy able to handle rules that introduce
null constituents, such as D — (. ‘
If the null constituent is encountered while parsing top-down, there is no problem.
The left-corner parser works just like a top-down parser. This is the situation with rules
of the form
A —- BC
C - ¢
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because the C gets parsed top-down. All that is necessary is to tell parse/3 that if
it’s looking for a C, it can simply skip ahead without parsing anything. This could be
accomplished by encoding the rules as

rule(a, [b,c]).
rule(c, []).

and adding the following clause to parse:

parse(C,S82,8) :-
rule(W, []1),
complete(W,C,S82,8).

That is: “If W is a category that can be a null constituent, then it is permissible to
‘complete’ a W at any time by doing nothing.”

Unfortunately, this is not what we need for English. Our best-established null
constituent is the null determiner, which occurs at the beginning of a noun phrase and
will therefore be parsed bottom-up. That is, the rules are

S —= NPVP
NP — DN
D — @

and these tell the parser to accept the null determiner as the very first step of parsing an
S or NP. °

With rules like these, the parser loops. The problem arises whenever it tries a parse
that does not succeed. Suppose the parser is looking for a VP but the VP isn’t there.
This means the parser can’t accept the first word of the VP, which could only be a verb.
Instead, it “accepts” a null determiner and hypothesizes the structure:

VP
/\
9
NP
N
l‘) N
0

Next it tries to complete the NP by parsing the N top-down. But suppose the N isn’t there
either. The parse ought to have failed by now, but in fact the parser has an alternative:
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it can “accept” another null determiner and try to complete another phantom NP. And of
course this will again fail the same way, and the same action will occur over and over.

The problem is that, like a bottom-up parser, the left-corner parser is allowed to
“accept” null constituents anywhere it wants to. The solution is to constrain the parser
by adding a table of LINks. Besides solving the null-constituent problem, the links make
the parser more efficient.

The table of links specifies what kinds of constituents can appear at the beginning
of what. For example, from the rules

S — NPVP
NP —- DN
VP — VNP

we can infer the links:

link(np,s) .
link(d,np) .
link(d,s).
link (v, vp) .
link(X,X).

The last of these says that any constituent can begin with itself; it applies when, for
example, the parser is looking for an N and is also about to accept an N.

We modify parse/3 so that there has to be a link between the constituent it is
looking for and the word it is trying to accept, thus:

parse(C, [Word|S$2],8) :-
word (W, Word) ,
link(w,C),
complete(W,C,S2,9).

parse(C,S2,8) :-
rule(w, []1), % for null constituents
link (W, C),
complete(W,C,S2,8).

This solves the problem because now the parser can only accept a null determiner if
it’s already looking for an S or an NP. It can’t “accept” null determiners willy-nilly in
arbitrary locations.

A left-corner parser can still loop on a set of rules of the form

A - BA
B — @

but in this case the looping is really the fault of the rules, not of the parser. These rules
really do specify an infinite number of different parses for each string: an A can consist
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of a null B followed by another A, or of two null Bs followed by another A, or of three
null Bs followed by another A, ad infinitum. So infinite backtracking is really the correct
thing to do with a grammar of this form. When the grammar specifies an infinite number
of parses, one can hardly fault the parser for trying to find them all.

Exercise 6.4.3.1

Add D — @ to your left-corner parser and observe what happens. Try to parse both gram-
matical and ungrammatical sentences.

Exercise 6.4.3.2

Construct a table of links for the entire grammar in Figure 6.1. Add the table of links to
your parser and demonstrate that the entire grammar can now be parsed.

Exercise 6.4.3.3

Define a predicate generate_links/0 that looks at the rules in a grammar, generates
the links automatically, and asserts them into memory.

Exercise 6.4.3.4

Even in grammars without null constituents, links can make the parser more efficient. Give
an example of how this is so.

6.4.4 BUP

Perhaps the best-known implementation of left—corner parsing in Prolog is BUP, devel-
oped by Matsumoto, Tanaka, Hirakawa, Miyoshi, and Yasukawa (1983).

In BUP, each PS rule goes into Prolog as a clause whose head is not the mother
node, but rather the leftmost daughter. Thus

NP — D N PP

becomes
a(c,sl,8) :- parse(n,S1,S2), parse(pp,S2,S3), np(C,S3,9).

That is: “If you’ve just completed a D, then parse an N and PP. Then call the procedure
for dealing with a completed NP.” Here C is the higher constituent that the parser is
trying to complete, and S1, S2, S3, and S are the input string at various stages.

In addition to a clause for each of the PS rules, BUP needs a “terminating clause”
for every kind of constituent, for example:

np (np, S, S) .
n(n,Ss,S).
d(d,s,s).
vp(vp,S,S).
vi(v,S,S).
s(s,S,9).
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Each of these means something like, “If you’ve just accepted an NP and an NP is what
you were looking for, you’re done.” .

BUP gets its efficiency from the fact that the hard part of the search—i.e., figuring
out what to do with a newly completed leftmost daughter—is handled by Prolog’s fastest
search mechanism, namely the mechanism for finding a clause given the predicate.

Figure 6.6 shows a complete, working BUP parser, without links. Note that, as
required by most Prologs, all the clauses with a particular predicate are grouped together.
Matsumoto and colleagues use the names goal and dict for the predicates that we
have called, respectively, parse and word. Their full BUP implementation includes

% BUP left-corner parser, without links, without chart

o

parse (+C,+S1,-9)
Parse a constituent of category C starting with input
string S1 and ending up with input string S.

oe oe

parse(C,S1,8) :-
word(wW,S1,82),
P =.. [W,C,6 582,97,
call(Pp).

% PS rules and terminating clauses

np(C,S1,8) :- parse(vp,S1,S2), s(C,S82,9). % S --> NP VP
np(np, X, X) . '

oe

d(c,s1,8) :- parse(n,S1,S2), np(C,S82,9). NP --> D N

d(d,x,X).

o0

v(C,81,S) :- parse(np,Sl1,S2), vp(C,S2,8). VP --> V NP

v(v,X,X).

s{s,X,X).
vp(vp, X, X) .
pp (pp, X, X) .
n(n,X,X).

% Lexicon

d, [thelX],X).
n, [dogiX]1,X).
n, [cat |X],X).
v, [chases|X],X). % etc.

word
word
word
word

Figure 6.6 A working BUP parser.
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links and a chart (see next section). For subsequent developments, see also Okunishi et
al. (1988).

Exercise 6.4.4.1

Add rules to the parser in Figure 6.6 to cover the complete grammar from Figure 6.1, except
for D — . Demonstrate that the parser works.

Exercise 6.4.4.2

In your parser from the previous exercise, add arguments to nodes to enforce subject-verb
number agreement and build a representation of the tree during parsing.

Exercise 6.4.4.3

Add links to BUP by putting calls to 1ink/2 in each phrase structure rule as well as in
the clause for goal itself.

Exercise 6.4.4.4 (small project)

The slow part of BUP is now the execution of ‘=. .’ and call/1 in parse. Eliminate
them. This requires major rearranging because now W (in parse) cannot be the predicate
of the procedure that gets called; instead it must be an argument. Use first-argument indexing
to good advantage. Compare the speed of the old and new parsers.

Exercise 6.4.4.5 (project)

Write a program that accepts a set of PS rules, in whatever notation you find most convenient,
and generates a BUP parser for them.

6.5 CHART PARSING
6.5.1 The Key Idea
Consider the rule
VP — V NP (PP)
This goes into DCG as two rules:

vp --> VvV, np.
vp --> VvV, np, pp.

Now consider the query:

?- vp([chased, the,cat, into, the,garden], []).
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The parser tries the first rule, works through the structure

VP
/\
1% NP
RN
T
chased the cat

and then realizes it hasn’t used up all the words. So it backs up, forgets all the work it
has just done, chooses the second VP rule, and parses the same structure again. Then it
goes ahead and parses the PP, giving:

VP
T
14 NP pP
/\
D/\ N P NP
5N
chased the  cat into tllle gar'den

Crucially, the parser had to parse the same V and NP twice. And that could have been
a lot of work—recall how complicated an NP can be.

A CHART PARSER OF TABULAR PARSER is a parser.that remembers substructures that
it has parsed, so that if it has to backtrack, it can avoid repeating its work. For example,
the first time through, a chart parser would make a record that the cat is an NP. The sec-
ond time through, when looking for an NP at the beginning of the cat into the garden, it
would look at its records (the cHART) before using the NP rule. On finding [np the cat ]
in the chart it would not have to work through the process of parsing the NP.

6.5.2 A First Implementation
To save each constituent, the parser must record:

o what kind of constituent it is;
e where it begins; and
e where it ends.
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One way to represent this information is to store, in the knowledge base, clauses such as:
chart (np, [the, cat, into, the,garden], [into, the, garden]) .

This means: “If you remove an NP from the beginning of the cat into the garden you’re
left with into the garden.” That is, the cat is a noun phrase.

The two lists represent positions in the input string. This is not the most concise
or efficient way to represent positions, but it is the most readable to human eyes, and we
will stick with it through most of this chapter.

Now let’s modify our original top-down parser (Section 6.2) to use a chart. To do
this, we modify parse/3 so that it looks like this:

parse(C, [Word|S],8) :-
word (C,Word) .

parse(C,S1,S8) :-
chart (C,S81,8).

parse(C,S81,8) :-
rule(C,Cs),
parse_list(Cs,S1,8),
asserta(chart (C,S1,8)).

The first clause deals with individual words, as in the original top-down parser. It’s
faster to look up single words in the lexicon than to try to get them into the chart.

The second clause says, “If what you’re looking for is already in the chart, don’t
parse it.” The third clause, using rule, is like the original except that it asserts a fact
into the chart at the end.

Also, we need a way to discard the chart before starting a new sentence:

clear_chart :- abolish(chart/3).

Otherwise the chart would become cluttered with obsolete information. So now the usual
query to parse a sentence looks like this:

?- clear_chart,
parse (s, [the,dog, chased, the, cat,near, the,elephant], []).

Finally, there is a minor technical problem to be dealt with. Normally, a chart
parser will look at the chart before any clauses of chart have been asserted. In some
Prologs, this causes an error message, which can be prevented by including, at the
beginning of the program, a line such as

:- unknown (_, fail). % in Quintus Prolog

"?ERROR’ (2,_) :- fail. % in LPA (Quintus DOS) Prolog
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All this requires almost no change to the parser. The only difference is that
parse/3 uses a slightly different method to accept a word:

parse(C,S81,8) :-
chart (C,S1,8).

parse(C,S1,8) :-
c(Word,S1,S), % this is the only change
word (C,Word) .

parse(C,S1,S8) :-
rule(C,Cs),
parse_list(Cs,Sl,S),
asserta(chart (C,S81,8)).

In one brief test, making this change sped up the parser about 30% with a simple
grammar. If the grammar is more complex, the speed-up could be greater. On the other
hand, it takes time to convert each sentence into a set of c/3 clauses.

Having introduced this technique, we will now put it aside, because in the rest of
this chapter, it is much more important for the examples to be readable than for them
to run fast. Converting the various chart parsers to use numeric positions is left as an
exercise for the implementor.

Exercise 6.5.3.1

Get this parser working and measure the speed-up on your computer. To do this, you will
probably have to parse the same sentence hundreds or thousands of times; be sure to clear
the chart in between.

6.5.4 Completeness

As implemented so far, the chart parser can remember what it found, but it can’t remem-
ber what it failed to find. For example, it can remember that the cat is an NP, but it
can’t remember that the cat is not a PP. This means that with a complex grammar, the
parser can waste more time than it saves.

To parse any constituent, the parser first looks at the chart. If the chart doesn’t
contain the constituent that it’s looking for, then the parser proceeds to do all the work
that it would have done if there had been no chart in the first place. In such a case the
chart doesn’t save it any work.

This situation arises mainly with fairly large grammars. Here is a simple example.
Consider the phrase-structure rules

VP — VNP (PP)(Adv)
NP — DN(PP)
PP —» PNP
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This is really four VP rules—with and without PP and with and without Adv—as well
as two NP rules, with and without PP.

Suppose the parser is parsing [vp saw the boy yesterday ]. Two different rules
allow a PP to come after boy. Accordingly, the parser will make two attempts to find a PP
at that position, and both attempts will fail. Each attempt will consist of a fair bit of work
(invoking PP — P NP, then looking at lexical entries for P, and failing to find yesterday
among them). If, the first time through, the chart could record that a PP is definitely not
present at that position, the second attempt to find one would be unnecessary.

There is also another reason why the chart needs to store negative information:
unwanted alternatives. Every parse that can be found in the chart can also be found
without using the chart. This means that, upon backtracking, the parser can often get
the same constituent more than one way, and the number of alternatives to try grows
exponentially. ;

A much better approach is to use the chart only if it is complete for a particular
constituent type in a particular position. That is, if you’re looking for an NP at the
beginning of the cat near the elephant, use the chart only if it is known to contain all
possible NPs in that position. Otherwise, ignore the chart and parse conventionally. And
if, when parsing conventionally, you fail to find what you’re looking for, then assert
that the chart is complete for that constituent in that position, because there are no more
alternatives to be found.

We can record completeness by asserting facts such as

complete(np, [the,cat, into, the,garden]) .
Modified to work this way, parse looks like this:

parse(C, [Word|S8],S8) :-
word (C,Word) .

parse(C,S81,8) :-

complete(C,S1),
I

<

chart (C,S81,8) .

parse(C,S1,8) :-
rule(C,Cs),
parse_list (Cs,S1,82),
asserta(chart(C,81,82)),
S2 = S.

parse(C,S1,_) :-
asserta(complete(C,S1)),
fail.

The first clause is as before. The second clause is as before except that it requires
the chart to be complete, and if the chart is complete, it performs a cut so that the




Sec. 6.5 Chart Parsing 173

subsequent clauses won’t be used. The third clause is as before except that it passes S2
to parse_list uninstantiated, in an attempt to get as many alternatives into the chart
as possible, and then checks afterward whether S2=S. The last clause asserts that the
chart is complete if all the other clauses have failed.

It is also necessary to modify clear_chart to erase complete as well as
chart, thus:

clear_chart :- abolish(chart/3), abolish (complete/2) .

Exercise 6.5.4.1

Demonstrate the problem of unwanted alternatives. Using the parser from Section 6.5.2
(without completeness checking), execute the query:

?- parse(s,[the,dog,chases,the,cat,near,the,elephant],[]),
write(y),
fail.

How many y’s do you get? Why?

Exercise 6.5.4.2

Modify the parser to include the completeness check and try the same query.

Exercise 6.5.4.3

Why can’t there be a cut in the second clause of parse if the parser does not check for
completeness? That is, in the parser in Section 6.5.2, why couldn’t that clause have been
as follows? '

parse(C,S1,S) :- chart(C,S1,S8), !.

(Hint: Parse the dog chases the cat near the elephant.)

Exercise 6.5.4.4

As implemented, the chart parser tries to parse single-word categories (N, V, etc.) with
chart and rule as well as with word. We can make parse faster by changing its first
clause to:

parse(C, [Word|S],8) :-

word(C,_),
!

.

word (C,Word) .

What does this do to the search process? How does it affect the way we have rendered
D — @7
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6.5.5 Subsumption

If nodes have arguments, chart parsing runs into another problem. Suppose the parser is
looking for np (X) and the chart contains np (singular) at the right position. Should
the parser use this chart entry? Definitely not. Doing so would instantiate X to the value
singular, which might be wrong.

To illustrate this problem is not particularly easy; there are no simple examples in.
English. It’s the kind of thing that crops up suddenly in the middle of a large project
after dozens of other rules have worked correctly.

For the determined reader, however, here is a somewhat contrived example. Recall
that one way to handle verb subcategorization is to assign the verbs to numbered classes.
Consider, then, the following PS rules. For legibility, they are written in DCG format,
although in our actual parser they would be clauses of rule/2.

vp --> verbal(0).
vp --> verbal(X), rest_of_vp(X).

rest_of_vp(l) --> np.
rest_of_vp(2) --> np, np. % etc.
verbal (X} --> v(X).

v(0) --> [sleep].
v(l) --> [see].
v(2) --> [givel. % etc.

Assume the usual expansions of np. Now execute the query:
?- clear_chart, parse(vp,[seé,the,dog],[]).

This parse should succeed, but it doesn’t. The first VP rule looks for a verbal (0)
and, of course, doesn’t find it. So the chart is marked as complete for verbal (0) in
that position:

complete (verbal (0), [see, the,dog]).

Now the second VP rule looks for verbal (X) in the same position, with X uninstanti-
ated. And verbal (X) matches the stored verbal (0), so the parser thinks the chart
is complete for verbal (X) as well.

The problem, of course, is that unifying verbal (X) with the stored verbal (0)
is the wrong thing to do. The parser should instead check whether the stored category
SUBSUMES the one it is looking for. We say that term A subsumes term B if and only if:

e A can be unified with B;
e When this is done, B is no more instantiated than it was before.

For example, £ (X,Db) subsumes f (a,b), but f(a,b) does not subsume f (X, b)
because performing the unification would instantiate X.
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The Quintus Prolog built-in predicate subsumes chk/2 succeeds if its first ar-
gument subsumes its second argument. With subsumption checking added, the second
clause of parse becomes:

parse(C,S1,8) :-
complete(C0,S1),
subsumes_chk (C0,C), !,
co = C,
chart (C,S81,8).

Figure 6.7 gives an implementation of subsumes_ chk for other Prologs.
Subsumption checker.

Based on code by R. A. 0’Keefe
in shared Edinburgh (later Quintus) library.

o 0P oe

subsumes_chk (?T1, ?T2)

Succeeds if term T1 subsumes T2, i.e.,
Tl and T2 can be unified without further
instantiating T2.

0P 0 o° oe

subsumes_chk (T1,T2) :-
\+ ( numvars(T2), \+ (T1 = T2) ).

numvars (+Term)
Instantiates each variable in Term to a unigue
term in the series vvv(0), vvv(l), vvv(2) ...

o 6¢ oe

numvars (Term) :- numvars_aux(Term, 0, ).
numvars_aux (Term,N,N) :- atomic(Term), !.

numvars_aux (Term, N, NewN) :-
var (Term), !,
Term = vvv(N),
NewN is N+1.

numvars_aux (Term, N, NewN) :-
Term =.. List,
numvars_list (List,N,Newl) .
nunvars_list ({],N,N).
numvars_list ([Term|Terms],N,NewN) :-
numvars_aux (Term, N, NextN} ,

numvars_list (Terms, NextN, NewN) .

Figure 6.7 Implementation of subsumes_chk for Prologs in which it is not built in.
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Exercise 6.5.5.1

Demonstrate the problem. Use the parser from the previous section with the grammar in:
this section, and show what goes wrong upon trying to parse see the dog.

Exercise 6.5.5.2

Solve the problem by adding subsumption checking, and demonstrate that your modified
parser works correctly.

Exercise 6.5.5.3

Why does parse use the subsumption checker when calling complete but not when
calling chart?

Exercise 6.5.5.4

With the grammar in this section, the modification suggested in Exercise 6.5.4.4 no longer
works correctly. Explain why, and make the necessary changes.

Exercise 6.5.5.5

Modify the grammar by adding arguments to nodes to account for subject-verb number
agreement and to build a representation of the tree. (This is simple; just copy the modified
grammar from Exercise 6.2.0.3.)

Exercise 6.5.5.6

(Not for courses that skipped Chapter 5.) Combine Mini-GULP with this parser. Account
for number agreement of subject and verb, and of determiner and noun, using GULP feature
structures. (Easy—copy the rules from Exercise 6.2.0.4.)

6.6.1 The Key Idea
Earley (1970) introduced a chart parsing algorithm with the following characteristics:

o It parses n-word sentences in, at most, time proportional to n3, which is near the
best possible performance.

e It handles null constituents correctly.

e It does not loop on left-recursive rules (A — A B).

e It uses a combination of top-down parsing (“prediction”) and bottom-up parsing
(“completion™).

o It is an ACTIVE CHART PARSER, i.e., the chart stores work in progress as well as
completed work.

o The parser does not backtrack; instead, it pursues all alternatives concurrently, and
at the end, all alternative parses are in the chart.
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The key idea of Earley’s algorithm is that the chart can store unfinished constituents

as well as constituents that have been completely parsed. To understand how this is

possible, recall that in DCG, the rule S — NP VP goes into Prolog as:

s(81,8) :- np(S1,82), vp(S2,8).

Now consider the query

?- s([the,dog,barked], []).

Imagine combining the query with the rule, like this:

s([the,dog,barked], []) :- np ([the, dog, barked], S1), vp(S1l,[]1).

This could be an Earley chart entry. Now imagine that the parser has processed the NP
the dog. Then this same rule can be simplified to:

s([the,dog,barked], []) :- vp ([barked], []).

That is: If barked is a VP, then the dog barked is an S. And after the VP is parsed, the
rule simplifies further to:

s([the,dog,barked], [1).

which indicates that the entire sentence has been parsed.

6.6.2 An Implementation

In Earley’s original notation, these three chart entries Jjust mentioned would have the
form:

S—eNPVP 0 0
S—NPeVP 0 2
S—NPVPe 0 3

The dot in the PS rule indicates which subconstituent is to be parsed next. The two
numbers are word counts; they indicate, respectively, the position of the beginning of
the S, and the position of the dot, relative to the input string.

To implement Earley’s algorithm in Prolog, we will store chart entries in yet a
different form, like this:

chart(s,[the,dog,barked],[np,vp],[the,dog,barked}).
chart(s,[the,dog,barked],[vp],[barked]).
chart(s,[the,dog,barked],[],[]).
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These save space by leaving out the predictable part of the Prolog clauses that we used
initially. The four arguments are:

o The constituent originally being sought;
e The position at which that constituent was supposed to begin;

e The subconstituents (GOALS) currently being sought (we’ll call the first goal in each
list the CURRENT GOAL); and

The CURRENT POSITION in the input string, where the current goal should begin.

Obviously, an Earley parser has many current goals, one corresponding to each chart
entry at the current position. (The inefficient representation of positions is deliberate;
see section 6.5.3.)

Earley’s algorithm parses entirely by manipulating the chart. This means that the
parse procedure is very simple—put the input string and initial goal into the chart, let
the parser do its thing, and then see whether it has produced a successful parse:

parse(C,S1,8) :-
clear_chart,
store(chart (start, 81, [C],S81)),
process (S1),
chart (C,s1,1[1,8).

Here process steps through the input string, calling the three parts of the parser at
each position:

process([]) :- !.

process (Position) :-
predictor (Position),
scanner (Position, NewPosition),
completer (NewPosition),
process (NewPosition) .

The three parts of the parser itself are:

e The PREDICTOR, which looks for rules that expand current goals, and uses them to
create new goals;

e The SCANNER, which accepts a word from the input string and uses it to satisfy
current goals; and

e The COMPLETER, which looks at the output of the scanner and determines which,
if any, larger constituents have been completed.

All three of these produce chart entries. For example, given

chart (s, [the,dog,barked], [np,vp], [the, dog, barked]) .
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the predictor will use NP — D N to produce

chart (np, [the, dog, barked], [d,n], [the,dog, barked]) .

Then the scanner will accept the, giving:

chart (np, [the,dog, barked], [n], [dog, barked]) .

Now the completer executes, but can’t do anything because nothing has been completed;
then the predictor executes, but can’t do anything because there are no rules expanding
n. So the scanner gets to execute again; it accepts dog, giving:

chart (np, [the, dog, barked], [], [barked]) .

Now the NP is complete and the completer takes note of this fact, modifying the chart
entry for S appropriately:

chart (s, [the, dog, barked], [vp], [barked]) .

In a similar way the predictor, scanner, and completer process the VP. Then the S is
complete and the last thing put into the chart is:

chart (s, [the,dog, barked], [1,[]).

Since S was the original goal and the input string is empty, the parse is complete.

The predictor, scanner, and completer communicate mainly through the chart, ex-
cept that each of them has to know the current position in the input string (and the
scanner changes it). Here is a more precise description of what they do:

Predictor

For each current goal at the current position,

look up all the rules expanding it

and use them to make more chart entries.

(This creates additional current goals at the current position;
do the same thing to all of them.)

Scanner

Accept a word from the input string and determine its category.
Look for all chart entries for the current position

whose active goal is that category.

Make, from each of them, a new chart entry,

removing the first goal and the first word of the input string.
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Completer

Look for constituents that have just been completed,
and use them to complete higher-level constituents.
(Upon completing a constituent this way,

do the same thing with the result.)

Figure 6.8 shows, in detail, the process of parsing The dog chases the cat. For
simplicity, lots of irrelevant syntax rules are ignored in the example. With a larger
grammar, there would be somewhat more entries in the chart and more work at each
stage.

Exercise 6.6.2.1

By hand, work through the process of parsing The dogs chase the cat near the elephant using
Earley’s algorithm and the grammar in Figure 6.1. Include all chart entries, including those
from rules that do not contribute to a successful parse. Show your results in the format of
Figure 6.8.

6.6.3 Predictor

The predictor looks at all the chart entries that apply to the current position in the input
string, and constructs, from each of them, new chart entries expanding their current goals.
This work is done by two predicates, predictor and predict, both of which use

fail to make execution backtrack through all possibilities:

predictor (Position) :-

chart (_,_, [Goal|_],Position), % For every chart entry of this
predict (Goal,Position), % kind do all possible
fail. % predictions

predictor(_) . % then succeed with no further

oe

action.

predict (Goal, Position) :-
rule(Goal, [HIT]),
store (chart (Goal, Position,
[HIT],Position)),
predict (H, Position),
fail.

For every rule expanding Goal

o0

oe

make a new chart entry and
make predictions from it too

oe

oe

then succeed with no further
action.

predict(_,_).

oe

There are two predicates here because predict has to call itself in order to make
further predictions from the chart éntries it creates.

The alert reader will notice that predictor looks for chart entries at Position,
and predict, which it calls, is constantly adding chart entries at the same Position.
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Start with:  chart(start, [the,dog,chases,the,cat], [s], [the,dog,chases,the,cat] ).

Predict: Use S — NP VP and NP — D N.
chart (s, [the,dog,chases,the,cat], [ np,vpl, [the,dog,chases,the,cat]).
chart (np, [the,dog,chases, the,cat], [d,n], [the,dog,chases,the,cat]).

Scan: Accept the.
chart (np, [the,dog,chases,the,cat], [n], [dog,chases,the,cat]).

Complete:  Nothing to do; no phrase has been completed.
Predict: Nothing to do; there are no rules expanding N.

Scan: Accept dog.
chart(np, [the,dog,chases,the,cat], [], [chases, the,cat]).

Complete:  An NP has now been parsed.
chart (s, [the,dog,chases,the,cat], [vp]l, [chases,the,cat]).

Predict: Use VP — V and VP — V NP.
chart(vp, [chases,the,cat], [v], [chases,the,cat]).
chart (vp, [chases,the,cat], [v,np], [chases,the,cat]).

Scan: Accept chases.
chart(vp, [chases,the,cat], [1, [the,cat]).
chart (vp, [chases, the,cat], [np], [the,cat]).

Complete:  According to VP — V, a VP and hence the S have now been parsed.
" chart(s, [the,dog, chases,the,cat], [1, [the,cat]).
chart (start, [the,dog,chases,the,cat], [], [the,cat]).

Predict: The other VP rule is still looking for an NP. Expand it...
chart (np, [the,cat], [d,n], [the,cat]).

Scan: Accept the.
chart (np, [the,cat], [n], [cat]).

Complete:  Nothing to do—no phrase has been completed.
Predict: Nothing to do—there are no rules expanding N.

Scan: Accept cat.
chart (np, [the,cat], [1,[]).

Complete: ~ Now the NP, and hence the VP and S, have been parsed.
chart (vp, [chases,the,cat], [1,[]).
chart (s , [the,dog,chases,the,cat], [1,[]).
chart(start, [the,dog, chases,the,cat], [],[]).
All done.

Figure 6.8 Earley’s algorithm in action.




182 Parsing Algorithms ~ Chap.

Why doesn’t it get into a loop trying to process its own output? Or at least, why call’
predict recursively to process the new entries, if they would have been found by
backtracking anyway?

For two reasons. First, store (which we haven’t defined yet) uses asserta, not
assertz, and thus the new entries are added before the one presently being looked at.
Second, even if store didn’t do this, most Prologs would never see the new entries,
because in most Prologs, newly added clauses cannot become alternatives for a query
that is already in progress. Upon starting any query, Prolog determines which facts and
rules can satisfy it, and any further rules that get asserted during the processing of the
query will be ignored.

Exercise 6.6.3.1

Get the predictor working and show that it can execute the first part of the parse in Figure

6.8, up to the point where the scanner is needed. Temporarily use asserta in place of
store. '

6.6.4 Scanner
The scanner is very simple:

scanner ( [W|Words],Words) :-
chart (C, PC, [G|Goals], [W|Words]),

o°

for each current goal at
current position

oe

word (G, W), % 1if category of W matches it
store(chart (C,PC,Goals,Words)), % make a new chart entry
fail.

scanner ([_|Words],Words) .

oe

then succeed with no further
action.

o0

Traditionally, the predictor predicts individual words. We do not do this here,
because it would add a vast number of unnecessary predictions to the chart. Instead, the
scanner determines the category of each word at the time the word is accepted.

Exercise 6.6.4.1

Add the scanner to the predictor that you have already gotten working. Show that your
scanner and predictor can execute the first two steps of the parse in Figure 6.8, up to the
point where the completer is needed.

Exercise 6.6.4.2

Why doesn’t second clause of scanner have anonymous variables in place of Words?

6.6.5 Completer

The completer looks at all chart entries at the current position that have no goals—i.e., all
completed constituents—and tries to use them to complete larger constituents. Normally
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the scanner produces one completed constituent (a single word, such as [y dog 1), and
the completer tries to use this to complete something larger, such as an NP.

Again, there are two predicates, because the completer has to call itself on its own
output:

completer (Position) :-
chart (C,PC, [],Position),
complete(C,PC,Pogition),
fail.

oe

For every chart entry with no
goals, complete all possible
higher constituents,

oe

oe

oe

then succeed with no further
action.

completer(_).

oe

complete (C,PC,Position) :-
chart (CO,PCO, [ClIGoals], PC),
store(chart (CO, PCO,
Goals, Position)),

oe

For every constituent that can be
completed make a new chart entry,

o0

Goals == [], % then fail here if Goals not empty,
complete(CO,PCO,Position), % or process new entry the same way
fail.

complete(_,_,_). % then succeed with no further

o0

action.

The difference is that, unlike predict, complete does not always call itself
on its own output—it does so only if its output is itself a chart entry with no goals, and
hence a completed constituent. Recall that the completer is responsible for creating

chart (s, [the,dog, chases, the,cat], [vp], [chases, the,cat]).
when the NP is finished and then
chart (s, [the,dog, chases, the,cat], []1,[]).

when the VP is finished. Only the second of these completes a constituent and thereby
justifies a recursive call to the completer.

Exercise 6.6.5.1

Get the completer working and add it to the predictor and scanner that you have already
implemented. Test it. Use a grammar that does not include any left-recursive rules.

6.6.6 How Earley’s Algorithm Avoids Loops

We haven’t defined store yet. Its definition is the key to the way Earley’s algorithm
keeps from looping on left-recursive rules. Specifically, store fails upon attempting to
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put something in the chart that is already there:

store(chart (A,B,C,D)) :-
\+ chart (A,B,C,D),
asserta(chart(A,B,C,D)).

Consider how the predictor handles the rules

NP — DN
NP — NP Conj NP

when parsing the dog and the cat. At the start, there is no way to tell which rule applies,
so the predictor makes two chart entries:

chart (np, [the,dog,and, the,cat], [d,n], [the,dog,and, the,cat]).
chart (np, [the,dog,and, the,cat], [np,conj,np], [the,dog,and, the, cat]).

Recall that the predictor is supposed to apply to its own output, i.e., the chart entries that
it generates. The first of these chart entries has d as its current goal; d is not a phrase;
so no further predictions are made from it. The second chart entry has current goal np,
which can be expanded by either of two rules, giving two more chart entries:

chart (np, [the, dog, and, the, cat], [d,n], [the,dog, and, the, cat]).
chart (np, [the,dog, and, the, cat], [np,conj,np], [the,dog,and, the,cat]) .

But these entries are already in the chart. This means that store fails, and the predictor
doesn’t get to call itself recursively on them. Thus the rule is blocked.

To put it more succinctly: Earley’s algorithm will never predict a constituent at a
position, if it has already predicted the same constituent at the same position.

But the completer is welcome to use the same chart entry more than once when
completing a recursively embedded phrase. Thus long phrases such as the dog and the
cat and the elephant are parsed with no problem.

Exercise 6.6.6.1

Determine (by hand or using the computer) the chart entries for parsing the dog and the cat
and the elephant. Show them in the order in which they are added to the chart.

6.6.7 Handling Null Constituents

As shown, our parser still has trouble with the rule D — @, which we represent as
rule(d, [1).

because the predictor insists that the second argument of rule be a nonempty list.

We have two choices. We can recast D — @ as word (d, [1) and modify the
scanner to handle it; or we can leave it as it is and modify the predictor.
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We choose the first of these, and add a clause for predict:

predict (Goal,Position) :-
rule(Goal, [1),
store(chart (Goal, Position, [],Position)),
complete(Goal, Position, Position),
fail.

This comes between the two clauses already defined. This clause generates a new chart
entry in the same way as the first clause, but then it calls the completer—necessary
because a constituent has been completed, of course, and the completer now needs to
work on it at #his position in the input string. Normally the completer would not get to
work until after the scanner had advanced the current position to the next word.

Exercise 6.6.7.1

Get an Earley parser working which includes the whole grammar in Figure 6.1.

Exercise 6.6.7.2

Add features to the nodes in the grammar to enforce subject-verb number agreement and
build a representation of the tree structure (as in Exercise 6.2.0.3).

6.6.8 Subsumption Revisited

Like all chart parsers, Earley’s algorithm needs a subsumption check. This turns out
to be just a simple modification to store: instead of checking for pre-existing chart
entries that match the new one, check for entries that subsume it.

store(chart (A,B,C,D)) :-
\+ (chart(Al,B,C1,D), subsumes_chk(Al,a), subsumes_chk(C1,C)),
asserta(chart (A,B,C,D)).

Here we save some time by looking only at A and C, which are the only parts of the
chart entry in which uninstantiated arguments can appear.

Recall that subsumes_chk is not built in. If you need to define subsumes_chk
for yourself but forget to do so, the parser will still work but the chart will contain
superfluous entries, because all the calls to subsumes_chk will fail.

Exercise 6.6.8.1

Demonstrate the need for a subsumption check in your Earley parser, using the same gram-
mar as in Exercise 6.5.5.1. Then modify your parser to correct it.

Exercise 6.6.8.2

As you have done with all the other parsers, add arguments to the nodes to account for
subject-verb number agreement and to build a representation of the tree. (See Exercise
6.2.0.3.)
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Exercise 6.6.8.3

(Not for courses that skipped Chapter 5. ) Combine Mini-GULP with the Earley parser,
Account for number agreement of subject and verb, and of determiner and noun, using
GULP feature structures. (Easy—copy the rules from Exercise 6.2.04)

"~ 6.6.9 Restriction

Earley’s algorithm can still loop on grammar rules where a daughter node has an argument
that contains an argument of the mother node, like this:

a(X) --> a(f(x)).

Suppose X = b. Then the predictor will first predict a (b), then a (f (b)), then
a(f(f(b))),then a (£ (Ff(£f(b)))), ad infinitum.

Here’s a real-life example. Several grammatical theories equip each verb with an
argument which is a list of constituents that should come after it:

v([]l) --> [sleepl; [bark].
v([np]) --> [see]l; [chase].
v([np,npl) --> [give].
v{lnp,ppl) --> [put].

Then a phrase-structure rule of the form
v(Y) --> v([XIY]), X. % (not a legal DCG rule)

picks apart these lists and generates the right things in the right places (Figure 6.9). (This
is essentially the same as the example of subcategorization lists at the end of Chapter 5.)

v([])
/\
v([ppl) pp
/\ /\
v{([np,ppl) np P np
RN N
d n d n
I I

put the book on the table

Figure 6.9 Parse tree with subcategorization lists.

Here we’re using DCG notation for clarity, but this last rule is, of course, not
legal in DCG, because one of the constituents (X) is a variable. Nevertheless, Earley’s




Sec. 6.6 Earley’s Algorithm 187

algorithm should be able to handle it, because as soon as the scanner accepts the verb,
the value of X will be known.

Earley’s algorithm loops for a different reason—the occurrence of the argument Y
within the argument [X|Y]. Starting with

chart(v([]), [sees,the,dog], [V([X]),X], [sees, the,dog]) .

the predictor will generate, in succession,

chart (v ([X]), [sees, the,dogl], [v([X1,X]),X1], [sees, the,dog]) .

chart (v([X1,X]), [sees, the,dogl, [v([X2,X1,X]).X2], [sees, the,dog]) .

chart (v([X2,X1,X]), [sees, the,dog], [Vv([X3,X2,X1,X]),X3], [sees, the,dogl) .

chart (v([X3,X2,X1,X]), [sees, the,dog], [v( [X4,X3,%X2,X1,X]),%X4], [sees, the,dog]) .

ad infinitum, where X, X1, X2... represent the variables that correspond to X on suc-
cessive invocations of the v (Y) rule.

Shieber (1986) proposes a solution that he calls RESTRICTION: make the predic-
tor ignore arguments whose values are not fully instantiated. By “ignore” we mean,
in the context of our parser, that anonymous variables will be substituted for these
arguments. (This makes the predictor overpredict, but no harm results because the
spurious predictions are not used further.) With restriction, sees the dog is parsed as

follows:
Predict: chart (v([]), [sees, the,dog],v(_), [sees, the,dog]) .
Scan: chart (v([npl), [sees,the,dog], [], [the,dog]) .

Complete: chart(v([np,npl), [sees,the,dog], [npl, [the,dog]) .

and so on. Restriction applies only to the predictor; the scanner and completer look back
at the rules and fill in the missing arguments. Gerdemann (1989, 1991) explores other
uses of restriction.

In this context it is helpful to think of parsing with arguments as a twofold
process—accepting the input string and building the arguments of the nodes. These
processes go on concurrently, working, as it were, at right angles to one another. Ear-
ley’s algorithm does a good job of loop-proofing the process of accepting the input
string, but loops with argument-building are still possible. An important research topic
at the moment is the discovery of linguistically motivated constraints on arguments.

Exercise 6.6.9.1

Demonstrate that Earley’s algorithm loops on the grammar shown.

Exercise 6.6.9.2 (small project)

Implement restriction and use it to make Earley’s algorithm handle this grammar success-
fully.
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6.6.10 Improving Earley’s Algorithm

The implementation of Earley’s algorithm that we have developed is far from optimal.
There are numerous ways to improve it from the standpoint of Prolog coding:'

) Represent positions in the sentence as numbers (word counts) rather than lists (as
in Section 6.5.3).

e Use first-argument indexing. The parser spends much of its time searching through
the chart or through the rules. Organize these so that they have distinctive first
arguments that will speed the retrieval of the desired information,

* Reduce the use of assert; see what happens if (part of) the chart is kept in a
list rather than stored in the knowledge base. This may be beneficial during some
kinds of processing but not others.

Another tack is to improve the predictor. Except for the loop-check, the usual Earley
predictor works just like a recursive-descent top-down parser. Like all top-down parsers,
it makes plenty more predictions than are really necessary. Earley (1970) suggested
letting the predictor look ahead to the next entry in the input string, and thereby narrow
down the range of choices. Kilbury (1984) replaced the top-down predictor with one
that works like a left-corner parser; Leiss (1990) discusses Kilbury’s proposal and then
presents his own, which works like a left-corner parser with links, thereby avoiding many
spurious predictions.

Exercise 6.6.10.1 (project)

Implement a good Earley parser in Prolog, making as many improvements as possible.

6.6.11 Earley’s Algorithm as an Inference Engine

Recall that when we introduced Earley’s algorithm, we presented chart entries as stored
Prolog rules and facts. This leads us to suspect that Earley’s algorithm could serve as
a general way to execute Prolog, instead of the normal search-and-backtracking pro-
cess. And this suspicion is right. Pereira and Warren (1983) and Pereira and Shieber
(1987:199-210) discuss “Earley deduction,” which they attribute to an unpublished 1975
note by David H. D. Warren.

The basic idea is that any inference engine can store LEMMAS, or previously proved
results, in order to keep itself from repeating work upon backtracking. This is the equiv-
alent of chart parsing pure and simple. An Earley inference engine is loop-proof because
it never stores a lemma, nor tries to derive further lemmas from it, if the same lemma,
or one that subsumes it, is already in the knowledge base. Thus, with Earley deduction,

ancestor (X,Z) :- ancestor(X,Y), ancestor (Y, 7).

does not cause the infamous loop.

UIn this section I am indebted to Joseph Knapka, who experimented with a number of these proposed
improvements.
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There are differences between parsing and deduction, of course. In Earley deduc-
tion, there is no input string and hence no scanner. Instead, both the completer and the
predictor need to look at every clause that is added to the chart.

The predictor looks at each rule newly added to the chart, and expands that rule’s
first subgoal using every possible rule in the knowledge base, then does the same thing,
if possible, to the results. Thus from

f(a) :- g(a). (newly added)
g(X) :- h(X), J(X). (in the knowledge base)

the predictor produces g (a) :- h(a), Jj(a). and adds it to the chart.

The completer deletes subgoals by resolving them with facts. When a fact is added
to the chart, the completer will resolve it against the first subgoal of every possible rule
already in the chart, so that for example

h(a). (newly added)
k(X) :- h{X), m(X). (already in the chart)

yields the new chart entry k (a) :- m(a).
The completer also works on newly added rules, resolving them against facts in
the chart or in the knowledge base. If for example

k(X) :- h(X), m(X).
has just been added and
h(a).

is already in the chart or the knowledge base, the completer will produce k (a) :— m(a) .
just as in the previous example. .

Figure 6.10 shows this process in action. Clauses are arranged in sets. First the
predictor works on a set, producing the next set of new clauses; then the completer works
on all the clauses in that set, producing the next set; then the predictor operates again;
and so on. ,

Earley deduction is slower and requires more memory than ordinary Prolog deduc-
tion. Even with simple computations, the chart can become quite large, and the process
of searching it, quite time-consuming. Further, even Earley deduction can loop on rules
of the form

because neither X nor f (X) subsumes the other, leading to the same problem as with
grammars in the previous section.

All this reminds us of the fact that Prolog was never meant to be a perfect inference
engine in the first place; instead, it was a deliberate compromise between logical purity
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Knowledge base: 1. ala,b).

. a(b,c).
3. a(X,z) :- a(X,Y), al(vy,z).
Query: 4. start :- af(a,c).
Predictor: 5. ala,c) :- af(a,Y0), a(Y0,c). from 4 and 3
6. a(a,Y0) :- a(a,Yl), a(Yl,Y0). from 5 and 3

(Loop checker intervenes here,
to prevent deriving a redundant clause

from 6 and 3.)
Completer: 7. ala,c) :- a(b,c). from 5 and 1
8. afa,c). from 7 and 2
9. start. from 8 and 4
(This is a solution to the original query;
computation could stop here, or continue
in order to look for other solutions.)
Predictor: 10. a(b,c) :- a(b,v2), a(y2,c). from 7 and 3
1. a(b,¥2) :- a(b,¥3), a(¥3,v2). from 10 and 3
(Loop checker intervenes here,
to prevent deriving a redundant clause
from 11 and 3.)
Completer: 12, a(b,c) :- a(c,c). from 10 and 2
13. a(b,Y2) :- a(c,vY2). from 11 and 3
Predictor: 4. a{c,e¢) :- alc,Y4), a(Y4,c). from 12 and 3
15. a(c,¥2) :- a(c,¥5), a(¥5,Y2). from 13 and 3
(Loop checker intervenes.)
Completer: No further action
(nothing matches a (c,Y4) or a(c,Y5) ).
Predictor: No further action (no new clauses).

Figure 6.10 Earley deduction in action. This computation would loop in ordinary
Prolog.

and speed. By not storing lemmas or checking for loops, Prolog runs faster and in less
memory than more sophisticated inference engines.
Exercise 6.6.11:1 (project)

Implement Earley deduction as an inference engine for Prolog clauses that do not contain
cuts. Evaluate the performance of your implementation.
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6.7 WHICH PARSING ALGORITHM IS REALLY BEST?
6.7.1 Disappointing News about Performance

Table 6.1 presents a piece of sad news. It shows the times taken by the parsers in this
chapter to parse, 100 times, the 24 sentences generated by the grammar

S — NPVP
NP — DN
VP —- VNP
PP — PNP
D — the
P — npear
N — dog, cat
V — chases, sees

which is a subset of the grammar in Figure 6.1.°

TABLE 6.1 COMPARISON OF SPEED OF VARIOUS PARSERS.

Time (in seconds) to parse 24 sentences 100 times*

ALS Prolog Quintus Prolog

Parser 20-MHz 80386 Sparcstation 1+
DCG rules 3.4 0.3
Top-down interpreter 6.0 1.2
Bottom-up (shift-reduce) 38.3 8.4
Left-corner (no links) 12.7 2.6
Left-corner (with links) 12.0 2.5
BUP (no links, no chart) 38.5 8.4
Chart (no completeness check) 472 20.5
Chart (with completeness check) 59.3 27.3
Chart (with subsumption check) 71.3 322
Earley (no subsumption check) 320.3 144.5

Earley (with subsumption check) 989.8 172.0

*Caution: These data were obtained with a very small grammar. See text before
drawing any conclusions!

The sad news is that as the algorithms get “better” the parsing gets slower and
slower. Top-down parsing is very fast; left-corner parsing is second best; but shift-
reduce parsing and all the chart parsers are regrettably slow, to the point that Earley’s
algorithm with subsumption is intolerable.

2The procedure was to parse the set of 24 sentences once (to allocate memory), start fiming, parse the
same set 100 more times, and stop timing. The test routine performed a cut after parsing each sentence.
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What’s going on here? Several things:

e LACK OF OPTIMIZATION. Recall that the parsers in this chapter were not designed
for speed. Only DCG and BUP compile the grammar rules into executable Prolog -
clauses; the others store the rules as Prolog facts and manipulate them at run time,
Further, no attempt has been made to fully exploit first-argument indexing or to
use the most efficient data structures.

® SMALL GRAMMARS. These tests were run with a very small grammar. That’s
one reason chart parsing comes out so badly. In the test sentences, there is little
ambiguity and hence little benefit from using the chart. But the cost of constructing
the chart is large, especially when it is built using assert. Pereira and Shieber
(1987:196-210), Ross (1989:217-246), and Simpkins and Hancox (1990) present
chart parsers in which the chart is passed along in arguments of procedures. In
any case, the chart would be much more helpful with a larger grammar.
But Shann (1991) reports that even with large grammars, Earley’s algorithm
remains quite slow; left-corner parsing and Tomita’s bottom-up algorithm run much
faster.

e SUBSUMPTION. A third factor is that subsumption checking is rather costly, for
two reasons. First, the subsumption checker itself is inefficient (except in Quintus,
where it is built in). Second, the subsumption check limits the use of first-argument
indexing. Instead of looking directly at the chart for an entry that matches the
current goal, the subsumption-checking parser must instead retrieve all the chart
entries for the current position, one by one, and run them through the subsumption
checker. This means that indexing can’t prevent some unnecessary entries from
being retrieved.

The lesson to be learned is that parsing isn’t easy. Both backtracking, and charts
that reduce backtracking, are costly. But there is another way to approach this problem.
Any nondeterministic parser can be improved by adding an ORACLE or TABLE that keeps
it from trying grammar rules that won’t succeed. This is particularly the case with
the shift-reduce parser, which otherwise spends too much time searching through all the
rules. A parser with an oracle goes through a series of numbered states. In each state, the
oracle looks ahead at the next word in the input string and tells the parser what grammar
rule to use and what state to go into next. If this process were deterministic, it would be
like the LR(1) parse tables commonly used by programming-language compilers (Aho
and Ullman 1972:368-399), but as Nilsson (1986) points out, the language need not be
deterministically parsable; Prolog can still backtrack if it needs to.

Not only does an oracle reduce backtracking, it also enables a shift-reduce parser to
handle null constituents (D — ) without looping, because the parser can only “accept”
a null constituent in places where the table allows one. For a clear exposition of shift-
reduce parsing with an oracle, see Pereira (1985).

In any case, the data in Table 6.1 should serve as a warning. Not every “efficient”
parser is actually fast; testing is always appropriate.
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Exercise 6.7.1.1

What is the difference between table-driven (oracle-driven) parsing and tabular parsing?

Exercise 6.7.1.2 (project)

Take one of the parsing algorithms presented in this chapter and make it work as efficiently
as possible with a reasonably large grammar. Support your claims with actual tests.

Exercise 6.7.1.3 (project)

Test some published parsers written in Prolog for which efficiency is claimed, and see if
they are as fast as DCG with a moderately large grammar.

6.7.2 Complexity of Parsing

Earley’s algorithm made history because it proved that phrase-structure parsing could be
done in POLYNOMIAL TIME, i.e., in time proportional to n¥, where 7 is the length of the
input string and k is some constant. Further, Earley proved that k < 3.

This is important because recursive-descent and shift-reduce parsers take, in the
worst case, EXPONENTIAL TIME, i.e., time proportional to k" (which, for large n, is much
greater than n°).

Recursive-descent and shift-reduce parsers take exponential time because they try
out each possible parse tree separately. With some grammars, every string of n words can
have k" different parse trees, of which only the last one can be used in further parsing.
Earley’s algorithm gets around this limitation by trying all the parse trees concurrently,
so that many of its actions apply to more than one parse tree.

Generally, polynomial-time algorithms reflect principled solutions to a problem,
while exponential-time algorithms reflect brute-force combinatorial search. Thus, Ear-
ley’s algorithm shows that parsing can be done in a principled way, not just by trying
all possible combinations one after another.

These famous results are less important than they appear, for several reasons. First,
natural-language parsers never face large values of n. Even exponential-time parsers can
be quick when r is small, and in real life, sentences of more than 30 words are uncommon.
‘When long sentences do occur, they can usually be broken up into shorter sentences that
are joined by words like and, and parsable separately.

Second, the n3 and k" results apply only to the WORST CASE, i.e., the situation in
which the parser “guesses wrong” as much as possible and uses the right rule only after
trying all the wrong ones. It is common for a k"-time parser to take much less than k"
time on any particular parse, because it is almost certain to guess right some of the time
and thereby avoid unnecessary work.

Third, and most importantly, the #* result holds only for grammars in which nodes
do not have arguments. Barton, Berwick, and Ristad (1987) proved that parsing, in the
general case, is NP-comPLETE—that is, belongs to a class of problems that are believed
to take exponential time—if grammars are allowed to have agreement features (i.e.,
arguments on nodes, such as singular and plural, together with agreement rules),
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and if words can be ambiguous (like deer, which is ambiguously singular or plural).

natural-language grammars do need these capabilities. '
On consideration, this is not unreasonable. There are sentences which even hym

beings cannot parse. Consider Barton, Berwick, and Ristad’s example: :

BUFFALO BUFFALO BUFFALO BUFFALO BUFFALO

Give up? The structure is exactly like Boston catrle bewilder Boston cartle. Nog
that I've told you this, you probably have no trouble parsing it. And this is a hallmark
NP-complete problems: even though a solution cannot be found efficiently, nevertheles
if you find a solution somehow, it can be verified quickly. What buffaloes us here is, 0
course, the multiple ambiguity of each of the words. :

Progress in developing more efficient parsers, then, apparently depends
things: the careful study of complexity in typical or average cases (not in the theoretic
worst case, which is admittedly intractable), and the discovery

of as-yet-unexploited:
constraints on natural-language grammars. :

Exercise 6.7.2.1

Show that, with the grammar

NP — D Ny, (and NP)
NP — DN, (and NP)
D —  the
Nyg  —  sheep, deer, quail (etc.)
Ny —  sheep, deer, quail (etc.)

every NP containing n ambiguous nouns (such as the deer and the quail and the sheep) has
2" different parse trees. (Hint: What happens to the number of parse trees every time an
ambiguous noun is added to the phrase?)

Exercise 6.7.2.2

Suppose that one parser takes 1.5 seconds to parse an n-word sentence, while another
parser takes 2.5 x n* seconds. For what values of 7 is the exponential-time parser faster?
(Compute some actual numbers and make a table.)

Exercise 6.7.2.3

(For students who know calculus.) Show that, for any constant ¥ > 1 and for sufficiently

large n, k" > n*. (Find the value at which k" = n* and then compare the rates at which k"
and n* grow as n increases.)

Exercise 6.7.2.4

Examine some English sentences in an actual text (perhaps this book). How long is the
longest sentence that does not break up into conjoined shorter sentences? What can you
observe about the statistical distribution of sentence length?
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Exercise 6.7.2.5

Consider the sentences:

There are pigs in the pen.
There is ink in the pen.

Clearly, pen needs two lexical entries, one with each of two meanings. What could be done
to guide the parser to the right lexical entry in each case, so that it doesn’t have to try both
of them? (Hint: Consider what it is like when you, as a human being, hear and understand
one of these sentences.)

6.7.3 Further Reading

Parsing is a big field, and this chapter has sampled only a small part of it. A vast number
of different parsing techniques have been developed, some for natural language, some
for programming languages, and some for both. Some good general surveys of natural-
language parsing are Winograd (1983), Kay (1980), King (1983), Dowty, Karttunen, and
Zwicky (1985), and Tomita (1991). On parsing in Prolog, see, besides the references
given throughout this chapter, Dahl and Saint-Dizier (1985, 1988), Abramson and Dahl
(1989), and Gal, Lapalme, Saint-Dizier, and Somers (1991).

In this chapter we have looked at parsers designed to handle arbitrary sets of PS
rules. But human languages have a structure all their own. PS rules in human languages
are constrained in ways that are not yet well understood, and human languages involve
many phenomena that PS rules by themselves can’t handle. Marcus (1978, 1980) inaugu-
rates an important line of research on parsers designed specifically for human languages.
Marcus’ parser has no backtracking and limited lookahead; it gives special treatment
to NP nodes; and its performance on structurally ambiguous sentences is surprisingly
humanlike (see also Kac 1982). More recent “principle-based parsers” deduce the rules
of grammar (PS rules, case assignment, etc.) from more abstract principles (Berwick,
Abney, and Tenny 1991). Tomita (1986), with more modest goals, presents a bottom-up
chart parser optimized to deal with the fact that natural-language utterances are short
(usually under 30 words) but have a lot of structural ambiguity.

In many languages, word order is partly or completely variable. For example, the
Russian translation of the dog sees the cat is sobaka vidit koshku with the three words
in any order depending on the desired emphasis. PS rules do not work well for such
languages, and a variety of other approaches have been taken; see Abramson and Dahl
(1989:150-153), Covington (1990), and Kashket (1991).



CHAPTER 7

Semantics, Logic, and Model
Theory

7.1 THE PROBLEM OF SEMANTICS

Semantics is the level at which language makes contact with the real world. This means
that semantics is at once the most important part of natural language processing, and
the most difficult. Many problems in computational semantics have, as yet, no widely
accepted solutions. In principle, an entirely adequate theory of semantics would require
a complete theory of human thought.

The goals of this chapter are more modest. In it, we will focus on how to translate
English into Prolog or something close to it, mainly in order to answer database queries.
Even though Prolog is not powerful enough to represent human knowledge as a whole, it
is adequate and convenient for the kinds of information commonly stored in computers.
Practically all computer databases map onto Prolog in a simple way.

The techniques used here are somewhat ad hoc, but there is a strong empha-
sis on the underlying logical theory. The model-theoretic semantics is largely based
on the Discourse Representation Theory of Kamp (1981; for a readable exposition
see Spencer-Smith 1987, and for an implementation, Covington, Nute, Goodman, and
Schmitz 1988).

196
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7.2 FROM ENGLISH TO LOGICAL FORMULAS
7.2.1 Logic and Model Theory

To describe the meanings of natural-language utterances, we need a precise way to
describe the information that they contain. We can get this from logic and set theory; it’s
called MODEL-THEORETIC SEMANTICS. It relies on MODELS, which are precisely defined
knowledge bases.

Consider a simple formula such as chases (fido, felix) (‘Fido chases Felix’). This
formula is part of a logical language. A MODEL for the language consists of a DOMAIN
D, which is the set of individual people and things that can be talked about, plus an
INTERPRETATION FUNCTION I which maps everything in the language onto something in
the domain. Specifically:

o I maps logical constants (proper names) onto individual members of D. For in-
stance, I(fido) is Fido.

e I maps predicates onto sets of tuples of elements of D. For example, I(green) picks

- out the 1-tuples consisting of elements of D that are green. I(chases) picks out all
the pairs (x, y) of elements of D such that x chases y. Similarly, I would map a
three-place predicate onto a set of ordered triples, and so on.

Now we can define, in a precise way, what it means for a formula to be true:

A formula of the form predicate(arg,, arg,, ...) is true if and only if (I(arg,),
I(arg,), ...) € I(predicate).
For example, chases (fido, felix) is true when (I(fido), I(felix)) € I(chases).

o A formula that contains quantifiers or connectives such as =, A, V, ¥, 3 is true if

it meets the conditions given by the definitions of the connectives and quantifiers
(Table 7.1).

TABLE 7.1 LOGIC SYMBOLS.

Symbol  Read as  Example Meaning
- not —P P is not true
A and PAQ P is true and Q is true
\Y% or PvQ P is true or Q is true, or both
— implies P — Q  if P is true then so is Q

(either P is false or Q is true, or both)

v for all ~Vx)P P is true for all values of x
3 for some (3x)P P is true for at least one value of x
A lambda x)p the formula is incomplete and has no

truth value until a value is
supplied for x
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For example, the definition of A says that P A Q is true if and only if P and QO are
both true. The definition of V says that (Vx) P is true if and only if P is true for
all possible values of x (i.e., true no matter which element of D we assign to x)

Compared to other ways of evaluating logical formulas, model theory has two important
advantages. First, it assigns meanings to all parts of every formula, rather than just as-
signing truth values to complete sentences. Second, model theory works with knowledge
bases (models) without making any claims about the real world as a whole. This is
important because it corresponds closely to computer manipulation of a database.
Exercise 7.2.1.1
Given the model
D = {Fido, Felix, Max}

I(fido) = Fido
I(felix) = Felix
I(max) = Max

I{animal) = {(Fido), (Felix)}
I(chases) = {(Fido, Felix), (Max, Fido)}

determine whether each of the following formulas is true or false, and show how you
obtained each result:

animal (max)

animal (fido)

animal (fido) A chases(max, fido)

animal (max) — animal (fido)

(¥x)(animal (x) — —chases (x, max))

Exercise 7.2.1.2

Assume that it is true that Fido shows Felix to Max, and that shows is a tﬁree—place predicate.
Supply I(shows).

7.2.2 Simple Words and Phrases

Table 7.2 shows logical formulas that represent a number of simple English words
and phrases, along with a way of representing these formulas in Prolog. As in Chapters
2 and 3, we represent lambda as ", which is right-associative so that Y"X" formula =
Y* (X" formula).

The first thing to note is that names are logical constants (‘Max’ = max), but
common nouns, like adjectives, are predicates (‘dog’ = (Ax)dog (x)). Being a dog, like
being green, is a property, not a thing.

This has to do with the distinction between sense and reference. A name can
refer to only one individual, so we translate it directly into a logical constant.! But a

LAt least for the moment. Montague (1973) and others argue that even names should be treated as
denoting sets of properties.
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TABLE 7.2 REPRESENTATIONS OF SIMPLE WORDS AND PHRASES.

Type of Logical As written
constituent representation in Prolog
Proper noun Logical constant
Max max max
Fido fido fido
Common noun 1-place predicate
dog (Ax)dog (x) X~dog(X)
professor (Ax)professor(x) X"professor(X)
Adjective 1-place predicate
green (Ax)green(x) X~green(X)
big (Ax)big(x) X big(X)
" Noun with 1-place predicates
adjectives joined by ‘and’
. green dog (Ax)(green(x) A dog(x)) X~ (green(X) ,dog(X))

Verb phrase

barked
chased Felix

Transitive verb

chased

Copular verb phrase

is a dog
is green

Prepositional phrase
with Max

Preposition
with

1-place predicate

(Ax)barked (x)
(Ax)chased (x, felix)

2-place predicate
(Ay)(Ax)chased (x, y)

1-place predicate

(Ax)dog (x)
(Ax)green(x)

1-place predicate
(Ax)with (x, max)

2-place predicate
Y)Y (Ax)with (x, y)

X~barked(X)
X“chased(X,felix)

Y"X"chased(X,Y)

X~dog(X)
X"green(X)

X~with(X,max)

Y X"with(X,Y)
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common noun such as ‘dog’ can refer to many different individuals, so its translation is
the property that these individuals share. The referent of ‘dog’ in any particular utterance
is the value of x that makes dog (x) true.

Second, note that different verbs require different numbers of arguments. The
intransitive verb ‘barked’ translates to a one-place predicate (Ax)barked (x). A transitive
verb translates to a two-place predicate; a ditransitive verb such as give translates to a
three-place predicate such as (Az) (Ay)(Ax)give(x, v, 7).

These arguments are filled in, step by step, as you progress up from verb to VP
and then S, thus:
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Verb chases (Ay)(Ax)chases (x, y)
Verb phrase chases Felix (Ax)chases (x, felix)
Sentence Fido chases Felix  chases (fido, felix)

We saw this process in action in Chapter 3.
Some sentences correspond to formulas with logical connectives in them:

Fido does not chase Felix ~ —chases (fido, felix)
Fido and Felix are animals  animal (fido) A animal (felix)

Note in Table 7.2 that the copula (is) is unusual among verbs because it has no
semantic representation. To put this another way, is X means the same thing as X. The
representation for ‘is a dog’ is the same as for ‘dog.’

Last, note that Table 7.2 does not cover the whole of English. Neither does first-
order predicate logic. Here are some examples where first-order logic is not sufficient to
represent English:

o Predicate with a predicate as argument:

Max has an unusual property.
(3p)(p(max) A unusual (p))

e Predicate with a whole proposition as an argument:

Fido believes Felix is human.
believes (fido, human (felix)).

e Context in which reference is blocked:

John is looking for a unicorn. )
(It’s not clear how to represent “a unicorn” here. Any formula that contains
(3x) ... unicorn(x) is wrong because this unicorn need not exist.)

We will not try to deal with such cases here, but they are all-pervasive; you cannot ana-
lyze much natural-language text without running into them. Fortunately, if you confine
yourself to texts whose information content can be represented in a computer database,
first-order logic or something close to it is usually sufficient.

Exercise 7.2.2.1

Using Tables 7.1 and 7.2, represent each of the following sentences as a logical formula:

Max is angry.

Fido chased Felix.

Felix did not chase Fido.

Either Felix is green, or Fido is blue, or both.
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Fido is a dog and Felix is a cat.

If Max is angry then Fido is angry.

Fido is a green dog.

Fido is either a dog or a cat, but not both.

7.2.3 Semantics of the N! Constituent

Now let’s do something practical. Recall the syntax rules:

N'' = AdjiN!
N' > N

The N' constituent is a common noun together with zero or more adjectives, but no
determiner, such as big green dog or fat professor.

Let’s implement the semantics of the N'. Adjectives and common nouns alike
translate to one-place predicates. What we want to do is combine all the predicates in
the N, joining them with A (‘and’). From

big = . (Ax)big(x)
green = (Ax)green(x)
dog = (Ax)dog(x)

we want to get:
big green dog = (Ax)(big(x) A green (x) A dog (x)).

Switching to Prolog notation, we want to combine X"big(X), X"green(X), and
X"dog (X) to get X" (big (X) +green(X),dog (X) ). Crucially, we have to ensure
that the variables get unified with each other; it would be quite unsatisfactory if we got
(big(X),green(Y),dog(Z)).

All this is easy to accomplish through arguments on DCG rules. First the lexical
entries for particular words:

adj (X"big (X)) --> [big].
adj (X"brown (X)) --> [brown].
adj (X"little (X)) --> [little].
adj (X"green (X)) --> [green].
n(X"dog (X)) --> [dog].

n(X"cat (X)) --> [cat].

Now for the PS rules. The rule N! — Nis easy to handle, since in this case the semantics
of the whole N' is the same as that of the noun:

nl(Sem) --> n(Sem).
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Finally, here is the rule that combines an adjective with an N!:

nl (X~ (P,Q)) --> adj(X"p), nl(X"Q).

Notice that this rule is recursive. After combining one adjective with an N, it can
combine another adjective with the resulting N, and so on, as shown in Figure 7.1.

N\‘
X~ (big(X),green(X) ,dog (X))

Adj Nt
X"big(X) X~ (green(X),dog(X))
Adj N!
X~green(X) X~dog(X)
N
X~dog(X)
big green o dog

Figure 7.1 Constructing the semantics of an N'.

Exercise 7.2.3.1
What would happen if, in place of

nl (X" (P,Q)) --> adj (X"P), nl(x"Q).
the last rule were written as follows?

nl((P,Q)) --> adj(P), nl(Q).

Exercise 7.2.3.2

Using the rules just given, get a small parser working and show that it generates the correct
semantics for the phrases cat, big cat, big brown dog, and big green cat.
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Exercise 7.2.3.3

Extend this small parser so that:

o It handles NPs whose determiner is @ or an, so that, for example, the semantics of a
big green dog is the same as that of big green dog.

e It handles sentences of the form Name is NP, such as Felix is a big brown cat, and
generates correct semantics, in this case
(big(felix) ,brown(felix), cat (felix)).

7.3 QUANTIFIERS (DETERMINERS)
7.3.1 Quantifiers in Language, Logic, and Prolog

Determiners in natural language correspond to quantifiers in formal logic; we shall use
the terms quantifier and determiner almost interchangeably.? Table 7.3 shows some
sentences that contain quantifiers and their semantic representations.

The alert reader will notice that the quantifier 3 normally goes with the connective
A, and ¥V with —. In our Prolog renditions of the logical formulas, the connectives are
implicit. We write all (X, Goall, Goal2) to mean that all values of X which satisfy
Goall also satisfy Goal2. A predicate to test this, in database queries, can be defined
as follows:

all(_,Goall,Goal2) :-
\+ (Goall, \+ Goal2).

That’s very simple: verify that there is no way to satisfy Goall that cannot be extended
(by instantiating more variables) to satisfy Goal2. The argument X is not actually used;
we include it only so that a11 will have the same argument structure as other quantifiers
to be defined later on.

But wait a minute—what if there is no way to satisfy Goall at all? Then
all(X,Goall,Goal2) succeeds, and that’s probably not what we want. In logic,
(Vx)(p(x) — g(x)) is true in the sitwation where p(x) is always false. But in nat-
ural language, we don’t want to claim that all unicorns are green is true when there
are no unicorns in the knowledge base. Accordingly, we should modify all to test
that there is indeed at least one solution to Goall, and then cut to prevent pointless
backtracking:

% all(-X,+Goall, +Goal?2)
Succeeds 1if all values of X that satisfy Goall
also satisfy Goal2.

ae

o

2Some authors say that a quantifier consists of a determiner plus its restrictor; that is, a determiner by
itself is not a complete quantifier, but only an ingredient for making one. On this view, for example, ‘most
dogs’ is a quantifier but ‘most’ is not. See the next section.
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all(_,Goall,Goal2) :-
\+ (Goall, \+ Goal2),

Goall,
]

The definition of some is even simpler, because all we have to do is find one solution
of Goall and Goal2. Again, we use a cut to prevent pointless backtracking:

some (-X, +Goall, +Goal2)
Succeeds if there is a value of X that
satisfies Goall and Goal?2.

o 00 o

some (_,Goall,Goal2) :-
Goall,

Goal2,
!

Exercise 7.3.1.1

Referring to Table 7.3 as needed, express each of the following sentences as a logical
formula, and as the Prolog representation of that formula.

All unicorns are animals.

One or more unicorns are purple.
A cat chased Fido.

Every cat chased Fido.

Every cat is an animal.

Every cat chased a dog.

Exercise 7.3.1.2

When al1/3 succeeds, does it instantiate its first argument? If so,'\explain how.

Exercise 7.3.1.3
What is the purpose of the cut in some/3?

Exercise 7.3.1.4
Given the knowledge base

dog(fido).

cat (felix).
cat (leo).
animal (leo) .
animal (felix) .
animal (fido) .
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TABLE 7.3 QUANTIFIERS DETERMINE THE OVERALL SEMANTIC
STRUCTURE OF THE SENTENCE.

Sentence Representations
Fido barked. barked (fido)
barked(fido)
A dog barked. (x)(dog (x) A barked (x))

some (X,dog(X) ,barked (X))

Every dog barked. (¥x)(dog (x) — barked (x))
all(X,dog(X),barked (X))

Fido chased a cat. (3x)(cat (x) A chased (fido, x))
. some (X, cat (X),chased(fido,X))

Fido chased every cat. (¥x)(cat(x) — chased (fido, x))
all(X,cat(X),chased(fido,X))

A dog chased a cat. (3x)(dog (x) A @y)(cat(y) A chased (x, )
some (X,dog(X) ,some (Y, cat(Y),chased (X ,Y)))

A dog chased every cat. (Fx)(dog (x) A (Yy)(cat (y) — chased )
some (X,dog(X) ,all(Y,cat(Y),chased X, )))

Every dog chased a cat. (Vx)(dog (x) — 3y)(cat(y) A chased (x, )
all(X,dog(X),some(Y,cat(Y),chased X, )

Every dog chased every cat.  (¥x)(dog(x) — (Vy)(cat(y) — chased (x, y)))
all(X,dog(X),all(Y,cat(Y),chased(X ,Y)) )

predict (without using the computer) the outcomes of the queries:

?- some (X,dog(X),animal (X)) .
?- all(X,cat (X),animal (X)).
?- all(X,animal (X),cat (X)).

Then use the computer to confirm your results.

7.3.2 Restrictor and Scope

We noted already that 3 is somehow associated with A and V with —. In fact, in Prolog,
we left out the latter connective and treated each quantifier as a relationship between a
quantified variable and two Prolog goals. '

Let’s pursue this idea further. Consider the formulas

(3x)(cat (x) A animal (x)) ‘At least one cat is an animal.’
(Vx)(cat(x) — animal(x)) ‘Bvery cat is an animal.’
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cat (leo) .
chases(fido, felix) .
chases (fido, leo) . .

How many solutions are there to the query ‘?- dog(X),cat (Y),chases (X,Y)."?
How many dogs are cat-chasers? Why aren’t these the same number, and what does this
tell us about the right way to implement generalized quantifiers?

Exercise 7.3.2.3
Define the generalized quantifier two in Prolog using setof (see section 7.4.2.)

Exercise 7.3.24

In ordinary English, does two mean ‘exactly 2” or does it mean 2 or more’? Discuss and
cite evidence.

- 7.3.3: Structural Importance of Determiners

Determiners affect more of the semantic structure than the syntactic structure would
suggest.

Consider for example Fido chases every cat. On the syntactic level, every modifies
cat. You might therefore expect that on thé semantic level, when every is converted into
anall(...,...,...) structure, only cat will be inside it.

But such an expectation would be wrong. On the semantic level, every has scope
over the entire sentence, even though syntactically it only modifies cat. Figure 7.2 shows
part of the process by which the semantic structure is built up.

Or consider Every dog chases a cat, which we represent as:

all(X,dog(X), some (Y,cat (Y), chases (X,Y)))

Here the constituent every dog gives rise to an all structure that contains not only the
representation of the NP (where every occurs), but also the representation of the VP.
Does this mean that our enterprise of building semantic structures constituent-by-
constituent is doomed? No; it means only that some careful use of lambda expressions
is required.
Exercise 7.3.3.1
Draw diagrams like Figure 7.2 for the sentences:

Every cat chased Fido.
Some dog chased every cat.

7.3.4 Building Quantified Structures

Now for the implementation. Despite their complexity, the semantic structures that we
need can still be built through unification of arguments in DCG rules.
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S
all(Y,cat(Y),chased(fido,Y))

VP
all(Y,cat(Y),chased(X,Y))

|4 NP
chased (X,Y) all(Y,cat(Y),...)
D N
all(...,...,...) cat (Y)
chased every cat

Figure 7.2 The quantifier all dominates the semantic representation, even though syntactically it
belongs only to the last NP. (This structure is incomplete; all lambdas are left out.)

Our representation of verbs and common nouns will be the same as before. For
brevity we will omit the N! node. This gives us some lexical entries:

n(X"dog (X)) --> [dog].

n(X%cat (X)) --> [cat].

v (X "meowed (X)) ~-> [meowed].
v(Y"X"chased(X,Y)) --> [chased] .
V(Y X "saw(X,Y)) --> [saw].

-~

The key question at this point is how to represent determiners. For our purposes,
a determiner is something that takes a scope and a restrictor, and puts them together. So
the semantic representation of every determiner will have the form (X"Res) " (X"Sco)
“Formula—that is, “Give me a restrictor and a scope and I’ll make a formula out of
them.” The variable X is explicit here so that the corresponding variables in different
terms will be unified. Thus we get the lexical entries:

d((X"Res) " (X"Sco) "all (X,Res, Sco)) --> [every].
d((X"Res) " (X" Sco) “some(X,Res,Sco)) --> [al; [some] .
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Now that we know what a determiner is, what’'s an NP? The same thing as a
determiner, except that the restrictor has been supplied, as in the structure:

NP
(XASCO)Aall(X,dog(X),Sco)

/\

D N
(X"Res) " (X"Sco) "all(X,Res, Sco) X"dog (X)
every dog

The D and NP are alike except that the NP is only awaiting the scope, not the restrictor.
The grammar rule for NP is

np( (X" Sco) "Pred) --> d((X"Res) " (X"Sco) “Pred), n(X Res) .
or, more concisely,
np(Sem) --> d((X"Res) “Sem), n(X"Res) .

There are two VP rules. If the verb has no object, then the semantics of the VP is
the same as that of the V:

vp(Sem) --> v(Sem).

That gives us [yp meowed] = X"meowed(X) and the like.
But if there is an object NP within the VP, the verb becomes the scope of that NP,
thus:

vp(X"Pred) --> v(Y"X"Sco), np((¥Y"Sco) "Pred) .

This accounts for structures such as:

vpP
XAsome(Y,cat(Y),chased(X,Y))

/\

\%4 NP
Y X" chased(X,Y) (Y"Sco) "some (Y, cat (Y), Sco)
chased some cat

Finally, the S rule takes the NP (which is waiting for a scope) and the VP (which
is waiting for an argument), and puts them together:

s(Sem) --> np((X"Sco) "Sem), vp (X" Sco) .
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This accounts for structures like this:

S
all(X,dog(X),some(Y,cat (Y),chased(X,Y)))

/\

NP vrP
(X"Sco) "all (X,dog (X), Sco) X" some (Y, cat (Y),chased(X,Y))
every dog chased some cat

Notice how things have changed: in Chapters 3 and 5 we treated the subject as an
argument of the VP, and now we’re doing it the other way around, so that determiners
(and NPs containing them) will always have control of the overall semantic structure.

That’s enough to handle many common sentence structures. Figure 7.3 shows, in
detail, how the structure of Every dog chased some cat is built up.

One last problem remains. We can no longer represent proper names as constants;
instead, they have to be structures that accept a VP as scope. Instead of

np(fido) --> [fido].
we have to write
np((fido”"Sco) "Sco) --> [fido].

Here (fido”Sco) "Sco is an expression that receives X~ Sco from the verb phrase,
instantiates the lambda variable to £ido, and returns Sco with no other changes.

Exercise 7.3.4.1

Get a parser working that uses the grammar rules introduced in this section, plus other rules
as necessary, in order to generate correct semantic representations for the sentences:

Fido barked.

A dog barked.

Every dog barked.

Fido chased Felix.

A dog chased Felix.
Felix chased a cat.
Every dog chased Felix.
Felix chased every cat.
A dog chased every cat.
Every dog chased a cat.
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7.3.5 Scope Ambiguities

The alert reader will have noticed that A dog chased every cat is ambiguous. Here are
its two readings:

A dog chased every cat =

(1) some(X,dog(X),all(Y,cat(Y),chased(X,Y)))
‘There is a dog that chased all cats’

(2) all(Y,cat(Y),some(X,dog(X),chased(X,Y)))
‘Bach cat was chased by some dog (not necessarily the same dog)’

The first of these is what our rules so far generate. The second can be derived from the
first by a transformation known as QUANTIFIER RAISING:

some (X, dog (X) ,all (Y, cat (Y),chased(X,Y)))

4
all(Y,cat(Y),some(X,dog(X),chased(X,Y)))

or, more generally:

Q1(V1,R1,Q2(V2,R2,82)) (QUANTIFIER RAISING FROM SCOPE)

U
Q2 (V2,R2,01 (V1,R1,82))

where Q1 and Q2 stand for the quaﬁtiﬁers3 and R2 does not contain any variable other
than V2.
It’s also possible to raise a quantifier from the restrictor, like this:

Someone who sees every dog laughs. =

(1) some(X,all(Y,dog(Y),sees(X,Y)), laughs (X))
‘There is someone who sees all the dogs and laughs’

(2) all(Y,dog(Y),some(X,sees(X,Y),laughs (X)))
‘For each dog, there is someone who sees it and laughs’

This time the general schema is:

Q1(V1,Q2(V2,R2,582),81) (QUANTIFIER RAISING FROM RESTRICTOR)
J

Q2(V2,R2,Q1(V1,R1,82))

30f course real Prolog does not allow a variable in this position.
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Actually these two schemas are instances of a more general pattern. In fact almost any
quantifier anywhere within the scope or restrictor—no matter how deep down—can be
raised to have scope over the entire sentence. Here’s how to do it-

e Pick the quantified structure to be raised; call it Q (V, R, ).
e Replace Q (V,R, S) with S. Call the resulting formula F.
e The result of raising is then Q (V, R, F).

That describes how to raise one quantifier from anywhere in the sentence. In real life,
more than one quantifier can be moved, because quantifier raising is recursive. There is
considerable debate as to how far the recursion should be allowed to go.

In principle, a sentence with n quantifiers could have 7! (n-factorial) readings. To
see that this is so, consider that you can choose any of the #n quantifiers to be raised to the
topmost position. Having done this, you can then raise any of the n — 1 quantifiers not
yet raised; then any of the n — 2 remaining, and so on, yieldingn x (n—1) x (n—2) x - - -
alternatives.

In practice, we don’t get this many, for several reasons. Some readings are blocked
because they leave variables unbound (that is, they put variables outside the scope or
restrictor of the quantifiers that bind them). Other readings are logically equivalent (for
example, raising one all past another all has no effect on the truth conditions of the
sentence). Still others are blocked by structural principles. For example, Hobbs and
Shieber (1987) point out that in English, it is not permissible to take a quantifier from
outside an NP and put it between two quantifiers that originated in that NP.

Further, there are differences in the ease with which various quantifiers can be
raised. Specifically, each almost always raises; some, ail, and every can raise but need
not do so; any tends not to raise; and numerals generally do not raise.

The especially alert reader will now notice that quantifier raising is what we’ve
been doing all along. The whole point of Figures 7.2 and 7.3 was that quantifiers get
raised out of individual NPs so that they have scope over the complete sentence. So it
makes sense to build an initial semantic representation with the quantifiers still in the
NPs, and then require that they be raised far enough to give well-formed logical formulas,
with further raising then being optional.

That is in fact now the standard approach to quantifier scoping (Cooper 1983,
Hornstein 1984, Chierchia and McConnell-Ginet 1990 chapter 3). Hobbs and Shieber
(1987) give an algorithm that raises quantifiers from NP positions, generating all and
only the scopings that are structurally possible in English.

Exercise 7.3.5.1

Give formulas for the two readings of Every man loves a woman.

Exercise 7.3.5.2

Explain why quantifier raising has no effect on the truth conditions of Every dog chased
every cat.
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Exercise 7.3.5.3

Express the sentence
Everyone who hates a dog loves two cats.

as a formula. Derive two more formulas from it (by raising from the scope and from the‘
restrictor respectively) and explain the meaning of the sentence that corresponds to each of
your three formulas. '

Exercise 7.3.5.4

Implement quantifier raising from scope and from restrictor. That is, implement a predicate
raise_quantifier/2 which, when given a formula, will perform raising from the
scope or from the restrictor, whichever is possible, and will also have a solution in which
no raising is performed. For example:

?- raise_quantifier (some(X,dog(X),all(Y,cat(Y), chased (X,Y)),What). -
What = all(Y,cat(Y),some(X,dog(X),chased(X,Y))) :
What = some(X,dog(X),all(Y,cat(Y),chased(X,Y)) ,What) .

When given the formula from the previous exercise, raise_quantifier should get all
three readings. You need not check whether variables are left unbound (in these examples
they won’t be).

Exercise 7.3.5.5

Define a predicate interpret/2 that parses a sentence using youf parser, then optionally
applies quantifier raising, so that.if you give it [every, dog, chased, a, cat] you get
two alternative formulas.
7.4 QUESTION ANSWERING
7.4.1 Simple Yes/No Questions

We have now implemented enough semantics to be able to answer, from a knowledge
base, plain-English questions such as:

Did Fido chase Felix?
Did every cat meow?
Did every dog chase a cat?

All we need to do is change the grammar rules so that questions can be parsed. To do
this, we replace the S rule

s(Sem) --> np((X"Sco)”Sem), vp(X"Sco).
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with one appropriate for questions,
s(Sem) --> [did], np((X"Sco) "Sem), vp(X“Sco).

and we add the “plain” forms of the verbs (without final -ed), thus:

v (X "meowed (X)) --> [meowed] ; [meow] .
v(Y"X"chased(X,Y)) --> [chased]; [chase].
v(Y"X"saw(X,Y)) ~--> [saw]; [see].

Now Did every dog chase a cat? translates directly into the query
?- all(X,dog(X),some(Y,cat(Y),chased(X,Y)).

which can be answered from a suitable knowledge base.

Exercise 7.4.1.1

Using the grammar rules presented so far, the definitions of some and al1l, and the knowl-

edge base

cat (felix). cat(leo).

dog(fido) . dog (bucephalus) .
(

saw(felix, fido).
saw{leo, felix).
chased(fido, felix) .
chased (bucephalus, leo) .

write a Prolog program that will accept and answer the questions

Did Leo see Felix?

Did every cat see a dog?
Did a cat see a dog?

Did every dog chase a cat?

and others of similar form. You need not handle scope ambiguities.

7.4.2 Getting a List of Solutions

To go further and answer questions that contain which or how many, we will need a way
to get a list of solutions to a Prolog query. Two approaches are possible.

The built-in predicate setof/3 returns a list of all solutions to a query. More
precisely,

?- setof(X,Goal,L).
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will instantiate L to a list of all the values of X that occur in solutions to Goal. The list
is sorted in alphabetical order and duplicates are removed. For example:

dog (fido) .
dog (bucephalus) .

?- setof (X,dog(X),L).
L = [bucephalus, fido]

That’s almost what we need. The problem is that if Goal contains a variable other than
X, setof will return only the solutions in which that variable has one particular value.
On backtracking, setof will then let that variable have another value, and so on. With
the knowledge base

f(a,c).

f(b,c).

f(c,d).

f(4,d).

we get

?- setof (X, £(X,VY),L)
Y = ¢ L = [a,b] ;
Y=d L = [c,d] ;

What we want is to get all the values of X into a single list. Otherwise, there are some
queries we can’t answer, such as how many dogs chase any cat (not necessarily the same
cat).

Fortunately setof provides a way to work around this.? If we write

?- setof (X, Term"Goal,L). % here " does not denote lambda

then setof works as before, except that all the variables in Term are allowed to take
on all possible values, like this:

?- setof (X, Y "f(X,Y),L).
L = [a,b,c,d]

(assuming the same knowledge base as before).

What we want, of course, is this kind of treatment for all the variables in Goal,
so we simply write Goal Goal. We'll encapsulate this trick by defining the predicate
solutions/3: ‘

4At least in ALS, Arity, and Quintus (UNIX) Prolog, and in the draft ISO standard; not in LPA Prolog
3.10 (Quintus Prolog for MS-DOS).
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oe

solutions (-X, +Goal, -List)

Returns, in List, all the values of X that satisfy Goal.

Free variables in Geoal are allowed to take all possible values.
List contains no duplicates.

o0 o

ae

solutions(X,Goal,List) :-
setof (X,Goal"Goal,List). % here "~ does not denote lambda

A few Prologs either do not have setof, or do not accept the Goal“Goal trick.
These Prologs have, instead, a built-in predicate findall/3 that works like setof,
but allows the free variables to take on all values, thus:

?- findall(X, £(X,Y),L).
L = [a,b,c,d]

The trouble with findall is that it doesn’t remove duplicates. If we’re counting the
cat-chasing dogs, we don’t want to count Fido twice merely because he chases two cats.
So we’ll need to define soluticns as:

solutions (X, Goal,List) :-
findall (X,Goal, L),
remove_duplicates (L, List) .

You will have to define remove_duplicates also.
Exercise 7.4.2.1

Get solutions/3 working on your computer. Using a small knowledge base, verify that
it works correctly.

Exercise 7.4.2.2

Using solutions/3, define the following generalized quantifiers:

® two(X,Res, Sco), true if there are exactly two values of X that satisfy Res and
also satisfy Sco;

e three(X,Res, Sco) and four (X,Res, Sco), analogous to two:

e most (X,Res, Sco), true if more than half of the values of X that satisfy Res also
satisfy Sco.

Be sure you compare the number of values that satisfy Res to the number of values that
satisfy both Res and Sco (not just Sco by itself). If there are three dogs and two green
objects (not dogs) in the knowledge base, you would not want to conclude that two dogs
are green.

7.4.3 Who/What/Which Questions

Now we can tackle questions that contain the “wi-words” who, what, which, and how
many. Syntactically, who and what are pronouns; roughly they mean ‘which person’ and
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‘which thing’. Which and how many are determiners and are the words we will focus on
here.

We can handle which and how many like quantifiers, except that when they occyr
in a query, the Prolog system will display the values on the screen rather than just testing
the truth of a statement:

which(X,Res, Sco) :-
solutions (X, (Res, Sco),L),
write (L),
nl.

how_many (X, Res, Sco) :-
solutions (X, (Res, Sco), L),
length(L,N),
write(N),
nl.

The main syntactic peculiarity of wH-words is that they always occur at the beginning of
the sentence. Of course, sometimes they would have been there anyway; structures like

Which cat saw a dog?
How many cats saw a dog?

are no problem. In other cases, however, the wH-word moves to sentence-initial position
and takes the rest of its NP with it. Instead of

Fido chased which cat?
we normally get
Which cat did Fido chase |,?

where, as in Chapter 3, , denotes a missing NP. The moved NP can be associated with
its original position using the same techniques as in Chapter 3.

WH-words are also subject to scope ambiguities. In English, Which dogs chased a
cat? can mean either ‘Which dogs chased one particular cat? or ‘Which dogs chased
any cat (we don’t care which one)?’ These require the same techniques, and present the
same puzzles, as the ambiguities of all and some already noted.

Exercise 7.4.3.1
Extend your parser from Exercise 7.4.1.1 to answer queries such as:
Which cat saw Fido?

How many dogs chased some cat?
Fido chased how many cats?

You need not deal with scope ambiguities, nor with plurals whose determiner is anything
other than which or how many.
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Exercise 7.4.3.2 (small project)

Extend your parser so that it also handles wH-movement and will answer queries such as:

How many cats did Fido chase?
Which cats did every dog see?

Again, you need not handle scope ambiguities, nor plurals with determiners other than which
or how marny.

7.5 FROM FORMULA TO KNOWLEDGE BASE
7.5.1 Discourse Referents

When we move from Question answering to actually building a knowledge base from
English input, a problem immediately arises. Consider how to render the sentence

Max owns a dog.
into Prolog. A first guess would be to use the two facts:

dog (X) . % wrong!
owns (max, X) .

That’s not right; in Prolog, these facts say ‘Anything is a dog’ and ‘Max owns any-
thing.” They would succeed with queries as bizarre as ‘?~ dog (qwertyuiop) .’ and
‘?- owns (max,new_vork) .’

Since the dog doesn’t have a name, we have to give it one. That is, we have to
recognize the dog as a DISCOURSE REFERENT (a thing that can now be talked about)® and
give it a unique name (a DISCOURSE MARKER), such as x123 or x(123). Then what
we want to say is:

dog (x(123)).
owns (max,x(123)) .

We will also need some kind of TABLE OF IDENTITY so that if we ever find out this dog’s
name, or find out that it is identical to some other dog with a different discourse marker,
we can keep track of it properly.

An even bigger problem arises with statements like Every farmer owns a dog. What
we want is something like this,

dog (Y) :- farmer (X). % wrong!
owns (X,Y) :- farmer(X).

3See Karttunen (1969), an account still well worth reading. In this section I follow Covington, Nute,
Goodman, and Schmitz (1988) and the sources cited there.
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but here the variables are obviously doing the wrong things. What we need is to gener
a different discourse referent for each farmer’s dog. We can do this by letting the do
name be a structure that has the farmer’s name in it, like this;

dog(x(124,X)) 1~ farmer (X).
owns (X,x(124,X)) :- farmer (X) .

Then if Max is a farmer, his dog is temporarily known as x (124, max) ; Bill’s dog is
%(124,bi11); and so on. Each dog has a unique name. This is a form of SKOLEMIZA-
TION (Skolem 1920), the replacement of 3-quantified variables with terms whose values
depend on the values of all the other variables. In effect, we are changing

(Vx)(farmer (x) — (y)(dog (y) A owns(x, y)))

into
(Vx) (farmer (x) — (dog (f(x)) A owns(x, f(x))))

where f is a function that maps each farmer onto (a name for) the appropriate dog.
Exercise 7.5.1.1

Define a procedure generate_marker/1 which will create new discourse markers by -
instantiating its argument to a different discourse marker every time it is called, thus:

?- generate_marker (What) .
What = x(1)
?- generate_marker (What) .
What = x(2)
?- generate_marker (What) .
What = x(3)

and so on. (Hint: Use assert and retract.)

Exercise 7.5.1.2

Translate into Prolog facts and rules, by hand, using discourse markers where necessary:

A dog barked.

Felix chased a dog.
Felix chased every dog.
A dog chased a cat.

Exercise 7.5.1.3 (small project)
Write a program that will take the formulas

some (X, dog (X) , barked (X))

some (X, dog (X) , chased (felix, X))
all(X,dog(X), chased(felix, X))
some (X, dog (X) , some (Y, cat (Y), chased(X,Y)))
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(which are, of course, representations of the sentences in the previous exercise) and translate
each of them into one or more Prolog clauses using discourse markers wherever appropriate.

7.5.2 Anaphora

ANAPHORA is the use of pronouns (ANAPHORS) to refer to people, places, or things
previously mentioned. For example:

Max; photographed himself;.
Then he; photographed Sharon;
and she; photographed him;.

The subscripts i, j, ... identify words that are COREFERENTIAL (refer to the same person).

In order for an anaphor to be understood, it must be matched up with the appropriate
pre-existing discourse referent. This is called RESOLVING the anaphoric reference® and
is often done by looking for the ANTECEDENT of the anaphor, i.e., the previous mention
of the thing that the anaphor refers to. Anaphora resolution is still an area of ongoing
research; but several important principles have emerged.

First, anaphors stand for discourse referents, not for words or phrases. Consider
the example: ’

Max found a trail and followed it.

Clearly this means that Max found a trail and then followed the same trail. But if it were
merely a substitute for the words a trail, then

Max found a trail and followed a trail.

would mean the same thing, which it doesn’t (in the latter sentence the two trails need
not be the same). Evidently, then, an anaphor stands for the same referent, not merely
the same words, as its antecedent.

Occasionally the antecedent of the anaphor is something that has not been men-
tioned, but has been brought to the hearer’s attention some other way. This is called
PRAGMATIC ANAPHORA. For an example, imagine hearing a loud noise and asking some-
one, What was it? The antecedent of it is the noise, which has not been mentioned.

Second, the antecedent almost always precedes the anaphor. This is simple but
important. The obvious way to search for the antecedent of an anaphor is to start with
the most recently introduced discourse referent, and search backward until a suitable
antecedent is found.

Occasionally the anaphor and antecedent are in reverse order; that is, the anaphor
comes first. This is called BACKWARDS ANAPHORA or CATAPHORA and the classic example
is:

Near him;, John; saw a snake.

5Not to be confused with “resolution” in theorem proving.
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Cataphora apparently requires the pronoun and antecedent to be in the same sentence;
with the pronoun more deeply embedded (farther from the S node at the top), as noted
by Ross (1967) and many others since (see Carden 1986). ‘
Third, the gender and number of the anaphor restrict the set of possible antecedents;
In English, we use he/him to refer to singular males, she/her for singular females, if for -
singular inanimate objects, and they/them for plurals.”
This suggests a general algorithm for finding antecedents:

e Keep a list (or a series of Prolog facts) listing all the discourse referents, newest

first, and tagging each of them as masculine, feminine, or inanimate, and as singular
or plural.

e Upon finding an anaphor, search through the discourse referents to find the most
recent antecedent with appropriate gender and number.

And in fact this strategy works well; Allen (1987:339-354) explores it at some length.
Hobbs (1978) found that it is not usually necessary to search back very far, because 98%
of all antecedents are within the current or the previous sentence.

There’s more. The form of the anaphor indicates whether the antecedent is in

the same sentence. In English, intrasentential anaphors (REFLEXIVES) end in -self. For
example:

John; saw himself;.
John; saw him;. (G #£D

Here we know that Aim in the second sentence cannot be coreferential with John because
it does not end in -self.

Actually, “in the same sentence” is not quite the right criterion; the exact syntactic .
criteria are more complicated, and are not fully understood. Note the contrast between: =

John; baked a cake for himself,.  (not him;)
John; saw a snake near him;/himself;.

The problem of formulating the exact conditions for the use of reflexives has been an
important stimulus for research in generative grammar (Chomsky 1982:218 ff., 288 ff.).

Finally, semantics and real-world knowledge can help choose between possible
antecedents, as in Jespersen’s macabre example:

If the baby; does not thrive on raw milk;, boil it;.
Here you have to know that milk can be boiled and babies can’t.

TWe will get to plural discourse referents in the next section.

8 Jespersen (1954:143), cited by Hobbs (1978).
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Computational linguists who are daunted by the challenges of anaphora can take
solace in the fact that native speakers have problems too, especially when expressing
themselves in writing. Unclear or misleading antecedents are a common problem in
poorly written English.

Exercise 7.5.2.1

Consider the following short text:

Without considering whether he would offend vegetable growers, the pres-
ident said he hated broccoli and didn’t have to eat it if he didn’t want to. And
sure enough, they were offended. As a protest, they sent him a huge amount of it.

(a) Use subscripts to indicate the coreferential nouns and pronouns.

(b) Point out an instance of cataphora.

(c) What kinds of information do you rely on when identifying the antecedent of each
anaphor? What kinds of indicators mentioned in the text are not necessary here?

Exercise 7.5.2.2

Consider now the much simpler text:

Cathy photographed Fred.
Then she photographed herself.
Finally Fred looked at Sharon and she photographed him.

which goes into formulas as:

photographed (cathy, fred) .
photographed(she, herself) .
looked_at (fred, sharon) .
photographed (she, him) .

Define a procedure resolve_anaphors/2 that will accept this series of formulas (ina
Prolog list) and will replace all the anaphors with the names of their most likely referents,
thus:

?- resolve_anaphors( [photographed (cathy, fred),
photographed (she, herself) ], What) .

What = [photographed(cathy, fred), photographed (cathy, cathy) ]

(and likewise for the complete list, and for other similar lists).

As real-world knowledge, your procedure can assume that Cathy and Sharon are
female and Fred is male. You can further assume that each formula corresponds to a single
sentence, and that all anaphors refer to individuals that have been named (so that there is
no need for discourse markers).
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7.5.3 Definite Reference (the)

Although we’ve analyzed lots of determiners, we still haven’t said anything about e
What does an NP like the car really mean?

The classic analysis, due to Bertrand Russell (1905), is that the is a quantifier -
(written 3! or ¢) which means ‘there is exactly one.” On this analysis, The king is bald
corresponds to the formula

3!x : king (x))bald (x)

and means ‘There is exactly one value of x which satisfies king(x) and also satisfies
bald (x).

But Russell’s analysis captures only part of the picture. Quite often, definite NPs
(NPs with the) refer to discoutse referents already mentioned, thus:

A dog; barked and a cat; howled.
Then the dog; chased the cat; away.

If the second sentence had said A dog chased a cat away it would have suggested that
the second dog and cat are not the same as the first ones. Using the makes it clear that
the dog and the cat are the ones already mentioned. It is as if the dog were an anaphor
that can only refer to dogs. ;

It turns out that treating definite NPs as anaphors is a good idea, with the proviso
that pragmatic anaphora is common, and that the antecedent is often in the hearer’s back-
ground knowledge (or assumed background knowledge) rather than in his or her imme-
diate awareness. I can say the king of Lesotho without previously having mentioned him;
you will react to this by assuming (if you did not know already) that Lesotho does indeed
have a king. That is, you will ACCOMMODATE to my pragmatic anaphora by introducing a
discourse referent with appropriate properties. Russell’s analysis of the does a good job
of characterizing the effect of the in just this special case where no antecedent is available.

Exercise 7.5.3.1
Modify resolve_anaphors from the previous exercise so that it will also resolve the

referents of NPs bound by the, treating them as anaphors whose referents must satisfy a
particular predicate. This time, use the text:

Henry III knighted Robin Hood,
Then Friar Tuck petitioned the king
and the king knighted the friar too.

The formulas that correspond to the sentences are

knighted (henry_1iii, robin_hoeod) .
the (X, king (X) (petitioned(tuck, X)) .
the (X, king (X), the (Y, friar(Y),knighted(X,v)).

and the relevant background knowledge is that Henry III is a king, Tuck is a friar, and Robin
Hood is neither one. :
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The output from resolve_anaphors should contain the following formulas (in a
list, of course):

knighted (henry_iii, robin_hood) .
petitioned(tuck,henry_iii).
knighted (henry_iii, tuck).

7.5.4 Plurals

The correct semantics for natural-language plurals is still a matter of debate. Webber
(1983) points out that in Three boys bought five roses, each plural NP has three readings:

® DISTRIBUTIVE (there were 3 boys and each bought 5 roses);
® COLLECTIVE (the 3 boys, as a group, bought a group of 5 roses);
e CONJUNCTIVE (a total of 3 boys bought roses, and a total of 5 roses were bought).

The distributive reading is what our quantifier rules already give us, and the conjunctive
reading could be derived from it by a transformation not unlike quantifier raising.

The collective reading is the interesting one because it introduces a new concept:
SETS Or COLLECTIVES. The key idea is that at least on the collective reading of

Three men sang.

and possibly on all three readings, the set of three men is itself a discourse referent, with
several attributes:

e ELEMENTS (although in this sentence they are not identified);
® CARDINALITY (the number of elements, in this case 3); and

® DISTRIBUTED PROPERTIES, i.e., properties that all the elements share (in this case
(Ax)man(x)).

Figure 7.4 shows a strategy for representing collectives in a knowledge base. Note that
collectives can be denoted by conjoined singulars (such as Curly, Larry, and Moe) as
well as by plurals.

Exercise 7.5.4.1

Give formulas for the distributive and conjunctive readings of Three boys bought five roses.

Exercise 7.5.4.2
Consider the knowledge base:

collective(x(4)).
element (x(4),curly) .
element (x(4),larry).
distprop(x(4),X " man (X)) .
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Curly, Larry, and Moe sang (together).

collective(x (1)) .
element(x(l),curly).
element(x(l),larry).
element(x(l),moe).
cardinality(x(l),3).
sang(x (1)) .

Three men sang (. together).

collective (x(2) ).
distprop (x(2) ;X"man (X)) .
cardinality(x(Z) , 30
sang(x(2)).

Some cats howled ( together).

collective(x(3)).
distprop(x(3),X cat (X)) .
howled(x(3)) .

Figure 7.4 Representation of collectives in a knowledge base.

This implies that Curly is a man, but the query ‘?- man (curly) .’ does not succeed
from it.

Define a predicate prove,/1 that attempts to satisfy any query, not only by executing
it in Prolog in the usual way, but also by making inferences from distprop and element.
Your code should have the form

prove(Goal) :- call (Goal) .
brove(Goal) :- .. -something else. ..
and the query ‘?- prove (man (curly)) .’ should succeed using the knowledge base

above.
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Exercise 7.5.4.3

The middle knowledge base in Figure 7.4 asserts that the group of three men sang. What
would it mean if instead of sang (x (2) ) it said distprop (x(2) , X sang (X)) ? Using
this as a hint, how could you represent the distributive reading of Three million men sang
without using three million discourse markers?

7.5.5 Mass Nouns

If plurals are a puzzle, mass nouns such as water or gold are an even bigger puzzle. In
sentences like

Gold is an element.
This ring is made of gold.

it makes sense to treat gold like a proper name: there is only one substance called gold
in the entire universe, and these sentences make assertions about it (cf. Chierchia 1982).
So they can be rendered in a knowledge base as something like this:

element (gold)
made_of (x(5),gold). % x(5) is discourse marker for the ring

But in other instances a mass noun denotes a PORTION of a substance (Parsons 1970). A
portion is somewhat like a collective except that it has no elements and no cardinality.
Instead it has a QUANTITY, which maps onto real numbers using standard units. Such an
interpretation is necessary in order to represent sentences such as:

There is an ounce of water in the glass.

portion(x(1)).

distprop(x(1l),X water(X)). % x(l) is a portion of water

quantity(x(1),29.6,mL). % comprising 29.6 milliliters
in(x(1l),x(2)). % and is in x(2), the glass.

Often, only relations between quantities are known, not actual values:
There is more water in the glass than in the cup.

Finally, note that mass nouns can often be CONVERTED (changed without alteration of
form) into count nouns denoting kinds of the original substance: the wines of California,
the heavy metals.

The semantics of mass nouns is an area of ongoing research. Ojeda (1991) and the
Papers in Pelletier (1979) describe a number of current approaches.

- Exercise 7.5.5.1

Identify the underlined noun in each of the following examples as either a count noun, a mass
noun denoting a substance, or a mass noun denoting a portion of a substance. (Hint: Count
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nouns distinguish singular from plural; mass nouns do not. Further, it makes sense:
“how much?” when the mass noun denotes a portion but not when it denotes a subst;

Every cat eats meat.
We got some cat food at the store.
The cat food was mainly made of tuna.

Exercise 7.5.5.2

How might you express John has more money than Jack does in Prolog, sticking as’
as possible to the formalism used in this section?

7.6 NEGATION
7.6.1 Negative Knowledge

So far we have said nothing about how to represent negative statements such as

Fido does not bark.

We’re handicapped by the fact that Prolog itself has no way to encode negative kn
edge. Extensions of Prolog that do so have been developed but are beyond the scope
this book.” One approach is to proceed as follows:

e Store negative facts in the knowledge base explicitly: neg (barks (fido))

¢ Define a procedure that creates the cCOMPLEMENT of each query by adding neg if
neg is absent, or removing it if it is present.

* Answer each query by trying to prove both the query itself, and its compleme
This gives any of four results: yes, no, don’t know (neither the query nor its co
plement succeeds), or contradiction (both the query and its complement succeed

In a database-querying situation we can get by with something much simpler: NEGATIO
AS FAILURE, the approach used by Prolog itself. We can assume that a query is false if
it cannot be proved true. This is sufficient to answer queries such as:

Is there a dog that does not bark?

?- dog (X), \+ barks(X).

and is the approach that will be used here.
Exercise 7.6.1.1

Assume that you are using an extension of Prolog with explicit negation as described above.
(a) What is the complement of barks (fido)? Of neg (barks (fido))?
(b) Given the knowledge base

?See Nute (1988); Covington, Nute, and Vellino (1988, ch. 11); Naish (1986); Pearce and Wagner (1991):
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barks (fido) .

howls (felix) .

neg (howls (leo)) .

neg(howls (felix)) .

what answer (‘yes,” ‘no,’, ‘contradiction,” or ‘don’t know’) should you get to each of the
following queries?

?- barks (fido) .

(
?- howls (fido) .
?- howls (leo).
?- howls (felix).

Exercise 7.6.1.2 (project)

Implement an extension of Prolog with explicit negation.

Exercise 7.6.1.3

Why is contradiction impossible in ordinary Prolog?
7.6.2 Negation as a Quantifier
Consider now the sentence:

No dog barks.
Here no is a quantifier, and we can render this sentence into logic as:
no(X,dog(X),barks (X))
(‘there is no X which is a dog and barks”).

More formally, no (Var, Scope, Res) is true if and only if there is no value of
Var that satisfies Scope and Res. In Prolog:
no(_,Scope,Res) :- \+ (Scope,Res).
To get the truth value we do not need to identify Var, nor to distinguish scope frorm
restrictor. We do these things only so that, during the structure-building process, no can
be handled like the other quantifiers.

Negation of the main verb (with not or does not) works like no except that it has

the whole sentence within its scope, thus:

Max does not bark.

no(_, true, barks (max) )
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Here true is the Prolog built-in predicate that always succeeds; we use it to express
“empty” restrictor with no content.

As expected, no participates in scope ambiguities. An example:
All dogs do not bark.

(1) all(X,dog(X),no(_,true,barks(X)))
All dogs are non-barkers.

(2) no(_,true,all(X,dog(X),barks (X)))
Not all dogs bark.

Ambiguities like these sometimes confuse native speakers, and some people are uneas
with any quantifier raising that involves negation.

Exercise 7.6.2.1
What does All that glitters is not gold normally mean? Could it be interpreted as meaning
something else? Explain why it is ambiguous.

Exercise 7.6.2.2
Extend your parser from Exercises 7.4.1.1, 7.4.3.1, and 7.4.3.2 so that it can answer question

of the form:

Is it true that no dog barks?
Is it true that every cat chased no dog?
Is it true that no dog chased every cat?

Here you can treat is it true that as a prefix that turns any statement into a question.

Exercise 7.6.2.3

Does Doesn’t Fido bark? mean the same thing as Is it true that Fido does not bark? If not,
what does it mean, and what is the function of the negative marker (n’f)? :

7.6.3 Some Logical Equivalences

Negation gives us many ways to create formulas that are logically equivalent to each |
other. The most obvious is DOUBLE NEGATION: '

no(_,true,no(_,true,S)) =3
where S is any formula. There are also interactions of negation with quantifiers:

some(V,R,no(_,true,S)) = no(_,true,all(V,R,S))
Some dogs do not bark Not all dogs bark



Sec. 7.6 Negation 231

211 (V,R,no{_,true,S)) = no(_,true,some(V,R,S))
All dogs do not bark It is not true that some dogs bark
(All dogs are non-barkers) (No dogs bark)

and perhaps most importantly of all,
no(_, true,some(V,R,S)) =no(V,R,S)

Notice that this is not quantifier raising; no ambiguities or changes of meaning are in-
volved. The formulas that we are interconverting have exactly the same truth conditions.

As long as negation occurs only in database queries, these alternative forms are
not a practical problem; the inference engine will get the right answers with any of them.
But if we want to store negative information in the knowledge base, it is important to
convert each formula into a standard form so that the same information will always be
expressed the same way.

What to use for a standard form is up to the implementor. One could choose to
move all negatives to the outermost, or perhaps the innermost, possible position. Another
possibility is to eliminate a quantifier: any system that has no and all can do without
gome, or if it has no and some it can do without all.

Exercise 7.6.3.1
Simplify the formula

no{_,true, some (X, dog(X),no(_,true,bark(X)))

to the simplest logically equivalent form. (To avoid bumping into a discrepancy between
our definition of all and the standard one, assume that there is at least one dog in the
knowledge base.)

Exercise 7.6.3.2

Define a predicate simplify /2 that will do the previous exercise for you. That is, define
a predicate that will “simplify” a formula containing negation, as follows:

e Transform double negation, no (_, true,no(_,true,S)), into S.

e If no occurs in the scope of another quantifier, move it out and change the quantifier,
so that: '
some (V,R,no(_, true,S)) becomes no(_,true,all(V,R,S)) and
all(V,R,no(_,true,S)) becomes no(_,true,some(V,R,S));

e Do both of these things recursively; that is, before simplifying any formula, attempt
to simplify its scope.

Exercise 7.6.3.3

Explain why a system that has no and all does not need some.
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7.7 FURTHER READING

Of the many available introductions to first-order logic, that of Barwise and Etchemend
(1991) meshes especially well with the material covered in this chapter. It covers topic
such as Skolemization that are left out of more traditional texts. McCawley (1981) i
also useful because of its length (Its explanations are fuller than usual) and because o
its emphasis on natural language semantics.

Aside from logic texts, books on semantics are of two kinds: some cover main]
word meanings (Palmer 1981) while others treat syntactic and logical issues. A 200
introduction of the latter type is Chierchia and McConnell-Ginet (1990). ;

A good example of semantic analysis in action is Horn (1989), a comprehensi\}
but readable study of negation that treats many other phenomena along the way. Dowt
(1979) gives insightful analyses of a wide range of phenomena, many of which can easil
be adapted into frameworks other than Dowty’s. :

For an introduction to model theory, see Bach (1989). The classic paper on gen
eralized quantifiers is Barwise and Cooper (1981), but Peres’ account (1991) is shorte
and more accessible to the beginner. ~



CHAPTER 8

Further Topics in Semantics

8.1 BEYOND MODEL THEORY

There is much more to natural-language understanding than Just translating English into
logical formulas. Unfortunately, the area beyond simple model theory is a realm of
fundamental mysteries and unsolved problems. Here computational linguistics becomes
inseparably bound up with knowledge representation and the general question of how
people think.

This chapter will briefly sketch three major topics that lie in this realm: language
translation, word-sense disambiguation, and understanding of events. Coverage will be
far from complete; parts of this chapter will have the atmosphere of a whirlwind tour.
I shall refrain from going deeply into knowledge representation, since doing so would
require another book at least as long as the present one.

2 LANGUAGE TRANSLATION

8.2.1 Background

Attempts at computer translation of human languages are as old as computers themselves
(Buchmann 1987). Practical techniques were foreseen by Trojanskij in 1933, and a word-

by-word French-to-Spanish translation program was implemented by Booth and Ritchens

233
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in 1948. By 1955 “machine translation” (MT) was an up-and-coming technology heavyi]
supported by the U.S. Government. In 1966, however, a National Academy of Sciene
committee declared MT to be impractical and most support for research was withdraw

The committee’s mistake was to expect instant results. In the 1950s and 1960
many mathematical and clerical activities—banking, engineering calculations, and th
like—had been computerized almost overnight. The committee failed to realize that M
was not simply a matter of applying computers to a mechanical procedure already we
understood. Nobody really knows how human translators do their work; they certainl
don’t just look up words in a dictionary and write down the equivalents in anothet
language, which is what some of the earliest MT programs tried to do. k

There has been a resurgence in MT since 1980, spurred by cheap computer power
and advances in computational linguistics. One of the most successful projects is TAUM-
METEQ, which translates Canadian weather reports from English into French (Thouin
1982).

8.2.2 A Simple Technique

The essential steps in language translation are ANALYSIS of the input, TRANSFER (restruc-
turing), and GENERATION of the output. Since the earliest days of MT, there have been
two rival approaches: to map one language onto another directly, or to translate the
input into an INTERLINGUA (intermediate language) which can then be translated into the
output language.

In what follows we will develop a translator that uses logical formulas as an
interlingua. We will take advantage of the fact that semantic analyzers written in Prolog
can be made REVERSIBLE, i.e., the same program can not only translate English into
formulas, but also translate formulas back into English (or whatever language the parser
handles). Then, to translate a sentence, one simply analyzes it in one language and
re-generates it in the other.

For example, the semantic analyzer from Section 7.3.4, reproduced in Figure 8.1,
is reversible:

?- s(What, [every, dog, barked], []) .
What = all(X,dog(X),barked (X))

?- s(all(X,dog(X),barked (X)) ,What, []).
What = [every,dog,barked]

So in order to translate languages, all we have to do is build the semantic structure using
a grammar for one language, and then turn the semantics back into a sentence using a
grammar for the other language. What could be simpler?

Exercise 8.2.2.1

Get the program in Figure 8.1 working (again) and verify that it is reversible. Use it to
translate

all(X,dog(X),all(Y,cat(Y),saw(X,Y)) )

into an English sentence.
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Q.

% Semantics of sentences with quantifiers on NPs.

s(Sem) --> np((X"Sco) "Sem), vp (X Sco).

np (Sem) --> d((X"Res) "Sem), n(X"Res) .

vp(Sem) --> v(Sem).

vp(X"Pred) --> v(Y"X"Sco), np( (Y"Sco) "Pred) .
d((X"Res) " (X"Sco) "all(X,Res, Sco)) --> [every].
d((XARes)”(XASco)”some(X,Res,Sco)) --> [a]; [some].
n(X"dog (X)) --> [dog].

n{(X"cat (X)) --> [cat].

v (X" meowed (X)) . ——> [meowed].

v(Y"X"chased (X,Y)) --> [chased].

V(Y "X "saw (X, Y)) --> [saw].

Figure 8.1 Reversible semantic analyzer.

Exercise 8.2.2.2 (for discussion)

Under what conditions does a Prolog program fail to be reversible? That is, how can you
recognize a non-reversible program? Discuss.

8.2.3 Some Latin Grammar

In what follows we will turn the semantic analyzer into an English-to-Latin translation
program.' (We choose Latin rather than French, Spanish, or German because Latin gram-
mar is quite a bit different from English, so that translating word by word is impossible.)
To begin with, we need a DCG parser for Latin, shown in Figure 8.2. So that this can
be merged with an English parser without conflict, all the node labels have been prefixed
with x, so that instead of s, np, vp, we call the Latin nodes xs, xnp, xvp, and
80 on.

Table 8.1 shows some English sentences with their Latin equivalents. Looking
both at the grammar and at the table, note that:

e Latin word order is different from English: the verb comes at the end of the
sentence, and one kind of determiner (here called xd2) follows rather than precedes
its noun.

e Case is marked on all nouns; ‘cat’ is felis in subject position but felem in object
position (and likewise ‘dog’ is canis or canem respectively).

e Determiners agree with nouns in case (omnis felis ver