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In the 1990s it was discovered that you can label the parts of speech (nouns, 
verbs, adjectives, etc.) in a text with something like 95% accuracy without doing a 
full syntactic parse. 
 
This is useful for many reasons.  In the CASPR project, we are using part-of-
speech tagging (POS tagging) to determine idea density.  More commonly, 
tagging precedes parsing or information extraction. 
 
Tagging is more than just looking up each word in a dictionary because many 
words can be more than one POS.  (Can is a noun, a modal verb, and a regular 
verb:  Can they can corn in aluminum cans?) 
 
Assuming you have a dictionary, if you just give each word its most common POS, 
you get about 90% accuracy. 
 
To get considerably higher accuracy, you have to look at context.  (In the phrase 
the can, you can tell that can is a noun without parsing any further structure.)   
 
You cannot get accuracy higher than about 97%, probably because that is the level 
of the internal consistency of the Penn Treebank (it may be about 3% errors) and 
partly because Penn Treebank tagging requires some very subtle distinctions, 
such as VB versus VBP (which are always identical in form – see below). 
 
There are several ways of looking at context.  Two main ones: 
 
Hidden Markov models – Probability based on what came earlier in the 
sequence.  (“After a determiner and then an adjective, the probability of a noun 
is…”)   
 

Called hidden because the states are sets of probabilities, not the words themselves. 
 
The Viterbi algorithm is an efficient way of finding the highest overall probability when a 
lot of different possibilities occur in immediate succession. 

 
Brill (transformation-based) tagging – Rules to correct the initial guesses.  That 
is, first you label each word with its most common POS, and then you make 
changes such as, “If a modal verb could also be a noun, change it to a noun if the 
preceding word is a determiner.”  See Eric Brill, paper in Computational 
Linguistics, 1995, which is unusually well-written.   
 

The rules for making changes can be learned by a simple machine-learning 
process.  That’s the appeal of Brill tagging. 

 
Tagged corpora:  The Penn Treebank and many other corpora have been 
tagged (by hand) and are very useful for training and testing taggers. 
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Morphology?  In English it is customary to tag words before performing any 
morphological analysis.  (E.g., baby and babies are in the lexicon separately.)  In 
other languages you wouldn’t be able to do that – there’s a lot more inflectional 
morphology. 
 
The Penn Treebank tag set  
(from  http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/CQP-HTMLDemo/PennTreebankTS.html ): 
 
 1. CC Coordinating conjunction 
 2. CD Cardinal number 
 3. DT Determiner 
 4. EX Existential there 
 5. FW Foreign word 
 6. IN Preposition or subordinating conjunction 
 7. JJ Adjective 
 8. JJR Adjective, comparative 
 9. JJS Adjective, superlative 
 10. LS List item marker 
 11. MD Modal 
 12. NN Noun, singular or mass 
 13. NNS Noun, plural 
 14. NNP Proper noun, singular 
 15. NNPS Proper noun, plural 
 16. PDT Predeterminer 
 17. POS Possessive ending 
 18. PRP Personal pronoun 
 19. PRP$ Possessive pronoun 
 20. RB Adverb 
 21. RBR Adverb, comparative 
 22. RBS Adverb, superlative 
 23. RP Particle 
 24. SYM Symbol 
 25. TO to 
 26. UH Interjection 
 27. VB Verb, base form 
 28. VBD Verb, past tense 
 29. VBG Verb, gerund or present participle 
 30. VBN Verb, past participle 
 31. VBP Verb, non-3rd person singular present 
 32. VBZ Verb, 3rd person singular present 
 33. WDT Wh-determiner 
 34. WP Wh-pronoun 
 35. WP$ Possessive wh-pronoun 
 36. WRB Wh-adverb 
 
There are a few more symbols for punctuation marks. 
 
Note that TO is in a category by itself, so that the tagger doesn’t have to decide 
whether it’s a preposition or a marker introducing a verb. 
 
Note also (as you will see in the next example) that words like after and before 
are considered prepositions even when they introduce sentences rather than 
noun phrases. 
 

http://www.ims.uni-stuttgart.de/projekte/CorpusWorkbench/CQP-HTMLDemo/PennTreebankTS.html�
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Example of some tagged text from the Penn Treebank: 
 
[ The/DT school/NN ] 
finds/VBZ that/IN  
[ the/DT children/NNS ] 
are/VBP satisfied/VBN with/IN  
[ smaller/JJR amounts/NNS ] 
of/IN  
[ food/NN ] 
since/IN  
[ all/DT ] 
of/IN  
[ it/PRP ] 
is/VBZ high/JJ in/IN  
[ quality/NN ] 
./. 
 
Here square brackets mark “noun groups.”  Taggers do not normally identify 
noun groups, but a very shallow parser can do so. 
 
 
About tagging of verb forms 
 
Tagging of verb forms makes some distinctions that are syntactic, not 
morphological.  That means it is very error-prone, but for many purposes, these 
errors do not matter.  Here’s the verb system: 
 
VB  - the plain form of the verb (no suffix): he will sing. 
VBP  - present-tense verb with no suffix: they sing. 
(VB and VBP are always identical in form, except are/VBP = be/VB.) 
 
VBD  - the past tense form: he sang, he talked 
VBN  - the past participle: he has sung, he has talked 
(VBD and VBN are identical in form if the verb is regular.) 
 
VBZ  - verb with an –s suffix: he sings 
 
VBG  - verb with an –ing suffix: he is singing 
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A cookbook approach to Brill tagging 
 
To build a Brill tagger, first scan your pre-tagged text (training corpus) and make a 
lexicon (dictionary) that tells you: 
 
 - The most common POS tag for each word. 
 - All the possible POS tags for each word. 
 
(For easy updating, we actually keep counts of how many times each tag has occurred in 
the training corpora.) 
 
The transformation rules will never change a tag unless the result is possible.  For 
example, can might get changed from modal verb to noun, but that will not happen to 
shall in the same context because shall is never a noun. 
 
Next, learn the transformation rules automatically as follows. 
 
In its initial state, the tagger simply assigns the most common tag to each word.  Looking 
at the tagged corpus, find a place where the tagger gets a word wrong (imagine the tag is 
X and should be Y).  Look at the 2 preceding and following tags (call them A, B, C, and D) 
and construct a set of candidate rules of the form: 
 
 Change X to Y if the preceding tag is B 
 Change X to Y if the preceding two tags are A and B 
 Change X to Y if the following tag is C 
 Change X to Y if the following two tags are C and D 
 
and so on.  Brill provides a total of 11 rule schemas – so in any context you can 
hypothesize 11 different rules. 
 
Now try using each of your 11 rules on the whole corpus and see how much it would 
improve (or worsen!) the tagging.  Choose the rule that works best, and add it to the rule 
set.  Also, apply it throughout and update the partially tagged text you have in memory. 
 
Then proceed, and find another tag that’s wrong, and do the same thing… 
 
Keep doing this until the improvements are small (or nonexistent).   
 
At this point you will probably be needing some rules that need to refer to specific words, 
not just tags.  Brill therefore introduces 19 rule schemas that can do this; you can train 
on them after training on the original schemas has stopped paying off.  He reports that 
doing this added very little to the accuracy, probably because the corpus was not big 
enough; when you’re going to learn rules for individual words, you need a lot of examples 
of each one. 
 
I would also advocate looking at the residual errors and making up rules by hand – we 
may notice something that the computer couldn’t notice. 
 
Brill’s tagger is published and available as a free download.  So yet another possibility 
is to use his rule set (already learned) together with a freshly created lexicon (from a 
corpus), plus some hand-tweaking. 


