
Lisp Problem Sets

Michael A. Covington

c⃝ 2002; revised 2002/09/13

THROUGHOUT, use only the features of
Lisp that are described in A Small Part of
Common Lisp.

Functions that you define can assume that
the arguments are the correct type (lists,
numbers, or whatever is specified). Do not
spend time making your functions check the
types of the arguments.

1 Evaluating Expressions

1.1 Arithmetic and Simple
Evaluation

Exercise 1.1.1 Evaluate:

(+ 2 3)

(+ (- 3 2) (* 4 6))

(* 20 (* 20 20))

(/ 4 2)

(/ 2 (+ 1 2))

(/ (+ 2 3) (- 5 2))

(/ 4.5 2)

Exercise 1.1.2 Evaluate:

(+ 2 3)

'(+ 2 3)

'(2 3 (+ 2 4))

`(2 3 (+ 2 4))

`(2 3 ,(+ 2 4))

Exercise 1.1.3 Express in Lisp:

(2 + 3)× (4− 5)

4× 5

15− 2

1.2 Binding Values to Symbols

Exercise 1.2.1 Evaluate these expressions in
this order, as if they were typed into the
computer in sequence, starting with a newly
opened Lisp session. If an expression cannot
be evaluated, say so.

(setf qwerty '(this is a list))

qwerty

x

(setf x qwerty)

x

(setf y '(+ 2 3))

y

(eval y)

(eval (eval y))

(setf z 'qwerty)

(setf w 'z)

w

(eval w)

(eval (eval w))

(eval (eval (eval w)))

(setf q '(setf z y))

q

z

(eval q)

z

(eval z)

1



Exercise 1.2.2 Evaluate these expressions in
this order, as if they were typed into the
computer in sequence, starting with a newly
opened Lisp session.

(setf y '(try this))

(setf a 'setf)

(setf b (cons a '(y 300)))

b

(eval b)

y

1.3 Types of S-Expressions

Exercise 1.3.1 Each of the following lines
either is or is not an S-expression. If it is an
S-expression, identify what type (e.g., symbol,
list, etc.). If it is not an S-expression, say so.

this-is-one

cons

CONS

"C:\\My Documents"

23.4

23/4

(blah blah)

(x "23" 23)

(this (and this (and this)))

this and (this and) this

sqrt(X)

(SQRT X)

1.4 List Manipulation

Exercise 1.4.1 Evaluate:

(first '(z y x w))

(rest '(z y x w))

(first '((a b c)))

(rest '((a b c)))

(cons 'a '(b c))

(cons '(a b) '(c d))

(cons (first '(a b c)) (rest '(a b c)))

Exercise 1.4.2 Suppose the variable x is
bound to a 10-element list. Give an

expression containing x whose value will be
the 5th element of that list.

Exercise 1.4.3 Suppose x is bound to the
complex list (((a b c) d) e). Give an
expression containing x whose value will be c.

Exercise 1.4.4 Which of these is not a
3-element list?

(a b c)

((a b c) (10 20 30) (a b c))

((a b c) (10 20 30) a b c)

2 Defining Functions

2.1 Simple Arithmetic

Exercise 2.1.1 The formula for converting
Fahrenheit to Celsius temperatures is:

C =
F − 32

1.8

Define a function named F-TO-C that
performs this conversion, so that, for
example:

(F-TO-C 68) ⇒ 20.

Exercise 2.1.2 Define a function named
POLY that takes 4 arguments, a, b, c, and x,
and computes ax2 + bx+ c. For example:

(POLY 4 9 6 10) ⇒ 496.

Exercise 2.1.3 Define a function VOLBOX

that takes 3 arguments, the length, width, and
depth of a rectangular box (in feet), and
computes the volume of the box (in cubic
feet), so that, for example:

(VOLBOX 1.5 2 10) ⇒ 30

Exercise 2.1.4 The same, but this time
name the function VOLBOXLIST and have the
argument be a 3-element list of numbers
giving the 3 dimensions of the box, like this:

(VOLBOXLIST '(1.5 2 10)) ⇒ 30

2



2.2 Logic and Conditionals

Exercise 2.2.1 Are expressions such as
(NOT (NOT X)) useful? Is there any situation
in which the value of (NOT (NOT X)) is
different from the value of X?

Exercise 2.2.2 Define a function named
MAX2 that gives the larger of its two
arguments, which are numbers, like this:

(MAX2 35 20) ⇒ 35

(MAX2 (+ 30 5) (* 10 2)) ⇒ 35

Exercise 2.2.3 Define a function named
MAX3 that is like MAX2 except that it takes
three arguments and gives the largest of the
three numbers:

(MAX3 20 50 10) ⇒ 50

Hint: MAX3 can call MAX2.

Exercise 2.2.4 Define a function named
SAME-FIRST that takes 2 lists as arguments,
and returns T if the two lists have the same
first element, and NIL if they do not.
Examples:

(SAME-FIRST '(A B C) '(A D E)) ⇒ T

(SAME-FIRST '(A B C) '(A)) ⇒ T

(SAME-FIRST '(A B C) '(B D E)) ⇒ NIL

(SAME-FIRST (REST '(A B C)) '(B D E))

⇒ T

Exercise 2.2.5 Define a function named
ZERO-OF-3 that takes 3 arguments, which can
be S-expressions of any type, and returns T if
at least one of the arguments is the number 0,
and NIL otherwise. Examples:

(ZERO-OF-3 'A 0 '(b c)) ⇒ T

(ZERO-OF-3 30 40 0) ⇒ T

(ZERO-OF-3 1 2 3) ⇒ NIL

(ZERO-OF-3 'A 'B 'C) ⇒ NIL

Exercise 2.2.6 Define a function named
ALL-ZERO-3 that takes 3 arguments, which

can be S-expressions of any type, and returns
T if all three of them are the number 0, and
NIL otherwise.

3 List Handling

3.1 Without Recursion

Exercise 3.1.1 Define a function named E5

whose argument is a list with at least 5
elements, which returns the 5th element, like
this:

(E5 '(a b c d e f g)) ⇒ e

Exercise 3.1.2 Define a function named
SWAP-FIRST-TWO that takes one argument,
which is a list, and creates a list like it but
with the first two elements swapped, thus:

(SWAP-FIRST-TWO '(A B C D E))

⇒ (B A C D E)

This should work for lists of any length ≥ 2.

Exercise 3.1.3 Define a function named IA

(standing for “infix arithmetic”) which takes
a 3-element list, swaps the first 2 elements,
and then evaluates the list. This enables you
to do things like this:

(IA '(2 + 3)) ⇒ 5

Note: The spaces are necessary; do not write
(2+3) or the like.

Because it is not recursive, this version of IA
can’t do this:

(IA '((2 + 3) * (4 + 5))) (ERROR)

You may, however, want to think about how
to make it do so.

3.2 With Recursion

Exercise 3.2.1 Define a function called
TRIPNUM that takes a list of numbers and
returns a similar list in which all the numbers
have been tripled:

(TRIPNUM '(10 100 6)) ⇒ (30 300 18)

3



Exercise 3.2.2 Define a function called
EVEN-COUNT that takes as its argument any
list, and returns T if the list has an even
number of elements, and NIL otherwise:

(EVEN-COUNT '(A B C D)) ⇒ T

(EVEN-COUNT '(A B C D E)) ⇒ NIL

Hint: Do not count the elements. Just take
them off 2 at a time. If the list has an even
number of elements, you will end up with nil;
otherwise you will end up with a one-element
list.

Exercise 3.2.3 Define a function called
CONTAINS-LIST that takes as its argument a
list, and returns T if any element of that list
is a list, or NIL otherwise:

(CONTAINS-LIST '(A B (C D) E)) ⇒ T

(CONTAINS-LIST '(A B C D E)) ⇒ NIL

Exercise 3.2.4 Define a function called
MAX-LIST that takes as its argument a list of
numbers and returns the largest number:

(MAX-LIST '(5 4 9 4 6)) ⇒ 9

Exercise 3.2.5 Define a function called
DUP-ELEMENT that takes 2 arguments, an
element and a number ≥ 1, and returns a list
containing that element repeated that number
of times, like this:

(DUP-ELEMENT 'A 5) ⇒ (A A A A A)

(DUP-ELEMENT '(A B) 3)

⇒ ((A B) (A B) (A B))

Hint: Here you are not looking for the end of
the list; you are looking for the number to be
≤ 1. To get started, consider what the
function should do if the number is 1, and
then what it should do if the number is larger.

Exercise 3.2.6 Define a function named RIA

that is the recursive version of the function
you defined in Exercise 3.1.3. That is, it
should be able to handle not only (2 + 3) but
also expressions like (2 + (3 * 4)),
((2 + 3) - (3 + 1)), and so on, thus:

(RIA '((2 + 3) - (3 + 1))) ⇒ 1

Note: The spaces are necessary; do not write
(2+3) or the like.

Here’s how RIA should work. The argument of
RIA is always either a number or a 3-element
list. If it’s a number, return it unchanged. If
it’s a 3-element list, create a new list as you
did before, except that you use RIA to process
the first and third elements so that they, too,
get swapped around (as do their own first and
third elements if they are lists, and so on).

To show how RIA works, you may want to try
it out without the final EVAL step, so you can
see the rearranged expression rather than its
value.

4 Higher-Order
Programming

4.1 Functions that Define Functions

Exercise 4.1.1 Define a function
MAKE-MULTIPLIER that takes 2 arguments, a
symbol and a number, and defines a new
function whose name is that symbol and
whose effect is to multiply numbers by that
number.

(To do its job, MAKE-MULTIPLIER will have to
create a DEFUN and then evaluate it.)

Example:

(MAKE-MULTIPLIER 'KILOGRAMS-TO-POUNDS 2.206)

⇒ KILOGRAMS-TO-POUNDS

Then you can do this:

(KILOGRAMS-TO-POUNDS 100) ⇒ 220.6

Another example:

(MAKE-MULTIPLIER 'CM-TO-INCH (/ 1 2.54))

⇒ CM-TO-INCH

Then you can do this:

(CM-TO-INCH 50) ⇒ 19.68504

— END —

4


