
Some Recursive List Processing Algorithms in Lisp

Michael A. Covington

c© 1996, 2002 (revised 2002/09/11)

1 Key idea

A list is a recursive data structure. If not
empty, it consists of one element followed by
another list.

Thus, there are many recursive algorithms
that process a list by doing something to the
first element and then recursively processing
the REST (the CDR) of the original list.
This is called “CDRing down” the list.

Such an algorithm must always check whether
the list is empty, and if so, terminate the
recursion.

Note: This is not the only way to build
recursive algorithms in Lisp. Instead of
CDRing down a list, some algorithms
decrement or increment a number or control
their recursion in some other way.

2 Searching for an element

Suppose you want to know whether X is an
element of list L. There are three possibilities:

• If L is empty, X is not an element of it.

• If (FIRST L) equals X, you’ve found it.

• Otherwise, X is in L if and only if X is in
(REST L).

The last of these is, of course, recursive.

Here’s the algorithm, in Lisp:

(defun mem (E L)
(if (null L)

nil
(if (equal (first L) E)

T
(mem E (rest L))

)
)

)

Then:

(mem 'A '(B A G)) ⇒ T

(mem 'Z '(B A G)) ⇒ NIL

(mem 'A '()) ⇒ NIL

(mem 'A '(B (A A) G)) ⇒ NIL

In the last of these, (A A) is an element of
the list, but A is not.

(There is a somewhat similar built-in function
named member, which we’re not using.)

Exercise 2.1 What happens if X occurs
more than once in L?

It turns out to be more useful if, instead of
returning T when the E is found, we return
the sublist of L that begins with E.

That is, when (first L) is what we are
looking for, we should return L rather than
T. This is always non-nil, so we can still use
mem as a predicate, but the value of L is
sometimes useful to the calling function.

Exercise 2.2 Modify mem so that it returns L
instead of T. It should then work this way:

1



(mem 'A '(B A G)) ⇒ (A G)
(mem 'Z '(B A G)) ⇒ NIL
(mem 'A '(Z E B R A S A N D C O W S))

⇒ (A S A N D C O W S)

Exercise 2.3 Suppose L is a list, and you
have modified mem as indicated in the previous
exercise. Under what conditions will

(mem 'A (rest (mem 'A L)))

return a non-nil value? That is, what does
the value of L have to be?

Exercise 2.4 Does it take more memory for
mem to return a list rather than just returning
T or NIL? Explain.

3 Copying a list

Here is a useless but interesting recursive
algorithm to copy a list:

(defun copylist (L)
(if (null L)

nil
(cons (first L)

(copylist (rest L))
)

)
)

That is: To copy a list, CONS its FIRST
with a copy of its REST. That is, to copy (A
B C), the computer would end up executing
something analogous to

(cons 'A (cons 'B (cons 'C NIL)))

except of course there are no quotes because
the symbols A, B, and C are the results of
computation.

Exercise 3.1 Get copylist working and
evaluate the following expressions:

(copylist '(A B C))

(equal '(A B C) (copylist '(A B C)))

[testing whether they contain the same data in
the same arrangement]

(eq '(A B C) (copylist '(A B C)))
[testing whether they are stored in the same
memory location]

Exercise 3.2 Consider this version of
copylist:

(defun copylist2 (L)
(if L

(cons (first L)
(copylist2 (rest L))

)
)

)

Is it the same algorithm? What has been
changed?

4 Appending lists

This algorithm is more useful if we don’t
actually copy the whole list unchanged.
Suppose that we put another list, such as ’(D
E F), in place of the final NIL. Then the
computer would execute the equivalent of

(cons 'A (cons 'B (cons 'C '(D E F))))

and give us (A B C D E F). We’ve found a
way to append (concatenate) lists.

Here’s the list-appending algorithm
implemented as a function. It has two
arguments. The first is the list that it will be
CDRing down, and the second holds the list
that will go at the end.

(defun app (L1 L2)
(if (null L1)

L2
(cons (first L1)

(app (rest L1) L2)
)

)
)

2



(There is a similar built-in function named
append, which we’re not using.)

Exercise 4.1 Get app working and try these
evaluations:

(app '(a b c) '(d e f))

(app '((a b c)) '((d e f)))

What’s different about the second one?

Exercise 4.2 Which of the following takes
more time and memory? Why?

(app '(a b) '(c d e f g h))
(app '(a b c d e f) '(g h))

Exercise 4.3 Are there any restrictions on
the types of the elements of the lists that can
be joined by app?

Exercise 4.4 Under what condition does app
return nil?

5 Making an altered copy of

a list

Algorithms like copylist are useful when
you want to make a list that is similar to the
first one but has undergone certain changes.
Here is a simple example of how to copy a list
of numbers, adding 1 all the numbers as they
are copied:

(defun add-one-list (L)
(if (null L)

nil
(cons (+ 1 (first L))

(add-one-list (rest L))
)

)
)

Given a list of numbers, add-one-list does
things like this:

(add-one-list '(20 30 90))
⇒ (21 31 91)

Exercise 5.1 Get add-one-list working
and demonstrate that it works as advertised.

6 Extracting elements

Another variation on copylist is to copy
some of the elements but not all of them.
Here’s an example that works on lists of
numbers. (Its funny-looking name list< is a
valid symbol in Lisp.)

(defun list< (N L)
; Makes a copy of list L
; containing only elements
; that are < N.
; L must be a list of numbers.
(if (null L)

nil
(if (< (first L) N)

(cons (first L)
(list< N (rest L))

)
(list< N (rest L))

)
)

)

For example:

(list< 5 '(4 9 4 6 3 3)) ⇒ (4 4 3 3)

Exercise 6.1 Define list>=, which is just
like list< except that it extracts the elements
that are ≥ N .

(Hint: This is as easy as it looks. You even
have a built-in function >= that does what you
need.)

Exercise 6.2 Define skip, which omits the
elements that are equal to N and copies all
the others. In this case neither N nor the list
elements need be numbers. Example:

(skip 'A '(B A D L A N D S))
⇒ (B D L N D S)

Exercise 6.3 In the definition of list<
above, the expression

3



(list< N (rest L))

is written twice. Does this indicate wasteful
computation? Explain.

7 Quicksort

Now that we have app, list<, and list>=,
we have everything necessary to implement
Quicksort, an algorithm invented by C. A. R.
Hoare in 1961 and originally implemented in
Algol (the first programming language that
allowed recursion).

Quicksort is an algorithm for putting
elements in order; for example, it turns the
list (5 4 9 4 6 3 3) into (3 3 4 4 5 6 9).
Quicksort is efficient; it can sort an n-element
list in time proportional to n log n, whereas
selection sort and similar algorithms require
time proportional to n2.

What’s more, unlike selection sort and its kin,
Quicksort does not require you to swap or
move elements of arrays. Thus, Quicksort can
be done on lists without manipulating
pointers.

The key idea of Quicksort is that sorting is
recursive. Take the list that you’re going to
sort, say

(5 4 9 4 6 3 3)

and pick out the first element. Now you have:

5 (4 9 4 6 3 3)

Now divide the list (4 9 4 6 3 3) into two lists,
one containing elements that should come
before 5 and one containing elements that
should come after it:

(4 4 3 3) 5 (9 6)

Now recursively sort the two shorter lists:

(3 3 4 4) 5 (6 9)

Finally, put everything back together in
order, and you have:

(3 3 4 4 5 6 9)

The recursion terminates when a list is

empty, because you can sort an empty list
without doing anything to it.

You’ve probably just realized that list< and
list>= are crucial steps in Quicksort. In fact,
if you have already defined them, the
Quicksort algorithm is simply:

(defun qsort (L)
(if (null L)

nil
(append

(qsort (list< (first L) (rest L)) )
(cons (first L) nil)
(qsort (list>= (first L) (rest L)) )

)
)

)

Here we’re using the built-in function append,
which can append 3 lists in one step, rather
than our own app, which only appends two.

Exercise 7.1 Get Quicksort working and try
it on lists of numbers.

Exercise 7.2 In Quicksort, why do we use

(cons (first L) nil)

instead of just L?

— END —

4


