
A Small Part of Common Lisp

Michael A. Covington
Institute for Artificial Intelligence

The University of Georgia

© 2004, 2010

Program layout

A Lisp program is a text file containing symbolic expressions (S-expressions). By typing the expression

(load "c:\\temp\\myfile.lisp")

or the like, you tell the Lisp system to read the file and evaluate all the expressions on it (but not print their
values).

Indentation is entirely up to you. Any expression can span more than one line; it is defined by its parentheses.
A semicolon makes the rest of the line a comment.

Upper and lower case in symbols are not distinguished. Thus X and x are the same symbol. Hyphens and
asterisks are permitted in symbols (like-this, *like-this*).

Types of S-expressions

Numbers

Integers: 2 2342342342 -234

Rationals: 2/3 11/5 -2/7

Floating-point numbers: 2.0 2.3 -0.999988 1.4E6 (= 1.4× 106)

Symbols: x y z first-example *or-what*

The empty list: nil ()

Lists (non-empty): (a b c) (a list (within a) list)

Elements can be any type of S-expression.

Strings (of characters): "This is a string"

Lisp also has notations for other abstract objects. For example, #'abc denotes the function whose name is
abc.

1

Evaluation

Numbers, strings, and nil evaluate as themselves.

Symbols are treated as variables and evaluate to whatever value is bound to them. Evaluating a symbol
that has not been bound is an error. (You can’t have uninitialized variables in Lisp.)

The symbol t evaluates to itself. It stands for “true.”

Lists evaluate as calls to functions or special forms. For example, the list (+ 2 3) calls the function named
+ with arguments 2 and 3. The list (X) calls the function named X (if there is one) with no arguments.

Functions evaluate all their arguments before applying the function. For example:

(+ (+ 2 3) (+ 9 8))

⇓
(+ 5 17)

⇓
22

Special forms do not evaluate all their arguments. The definition of the special form tells you which
arguments, if any, get evaluated.

What we mean by “gives” or “returns”

If we say that a function “gives” or “returns” or “evaluates to” or “evaluates as” 234, that means its
value is 234.

In this document, evaluation is symbolized by ⇒. Thus, “(* 6 7) ⇒ 42” means that the value of (* 6 7)

is 42.

The purpose of functions is to compute values, not to print things. The computer may or may not print out
the value of a function, depending on the circumstances.

Consider for example the expression (+ 5 (* 3 4)). Clearly the purpose of (* 3 4) is to return (give) the
value 12 for use in further computation. A function that prints out 12 but does not return 12 as its value
would be useless there.

Arithmetic

Types: The result of an integer division is an integer or rational number. Otherwise, arithmetic follows the
rule that if you mix integers with rationals, you get a rational result, and if you mix any kind of number
with floating-point numbers, you get a floating-point result.

(+ number number number. . .) (Function)

Gives the sum of the numbers.

(- number number number. . .) (Function)

Gives the result of subtracting all the subsequent numbers from the first one.

2

(* number number number. . .) (Function)

Gives the product of the numbers.

(/ number1 number2) (Function)

Gives number1
number2

. If both numbers are integers, result is either integer or rational.

Control of evaluation

' (quote) (Special form)

Prevents evaluation of its argument.

'(a b c) ⇒ (a b c)

` (backquote) (Special form)

Prevents evaluation of its argument, but allows expressions within it to be evaluated if they are
marked with commas.

`(a ,(+ 2 3) c) ⇒ (a 5 c)

(eval expression) (Function)

Causes expression to be evaluated an extra time.

(eval '(+ 2 3)) ⇒ 5

This makes it possible to evaluate expressions you have constructed by computation.

Example:
(cons '+ '(2 3)) ⇒ (+ 2 3), so...
(eval (cons '+ '(2 3))) ⇒ 5

(setf symbol expression) (Special form)

Gives the value of expression.

As a side effect, symbol is bound to the value of expression.

If symbol is not already a variable, it is created and is global.

(setf x (+ 2 3)) ⇒ 5 and binds x to the number 5.
(setf x '(+ 2 3)) ⇒ (+ 2 3) and binds x to the list (+ 2 3).

List manipulation

(cons item list) (Function)

Gives the result of putting item onto the beginning of list.

(cons 'a '(b c)) ⇒ (a b c)

If list is not a list, the result is an “improper list” or “dotted pair”:
(cons 'a 'b) ⇒ (a . b)

3

(first list) or (car list) (Function)

Gives the first element of the list.

(first '(a b)) ⇒ a

(rest list) or (cdr list) (Function)

Gives the list of all elements of list except the first.

(rest '(a b c d)) ⇒ (b c d)

(rest '(a)) ⇒ nil

(append list list list . . .) (Function)

Joins two or more lists, giving a list of all their elements in order.

(append '(a b c) '(d e f)) ⇒ (a b c d e f)

(append '(a b) '(c d) '(e f)) ⇒ (a b c d e f)

(append '(a b (c d)) '(e f)) ⇒ (a b (c d) e f)

Defining functions

(defun name (argument argument argument. . .) (Special form)
expression
expression
expression
...

)

Evaluates to name, and as a side effect, defines (compiles) a function named name which will
execute by substituting values for all the arguments and then evaluating all the expressions and
returning the value of the last one.

Often there is only one expression, which is complex.

Example:

(defun double (x)

(+ x x)

)

⇒ double and defines the function named double.

When this has been done, (double 33) ⇒ 66.

Note: A program can add code to itself by creating a defun through computation and then
evaluating it.

Comparisons and logic

Lisp uses nil (the empty list) to mean “false.” The special symbol t evaluates to itself and is usually used
to represent “true,” although in fact any non-nil value counts as true. (The number 0 is non-nil.)

4

(symbolp expression) (Function)
(numberp expression) (Function)
(listp expression) (Function)

Gives t if its argument is of the type specified, and nil otherwise.

Note that listp is true of nil as well as non-empty lists.

(symbolp 'a) ⇒ t

(symbolp '(a b)) ⇒ nil

(listp 'a) ⇒ nil

(listp '(a b)) ⇒ t

(listp (cons 'a '(b))) ⇒ t

In these function names, p stands for predicate.

(null expression) or (not expression) (Function)

Gives t if its argument is nil, and nil otherwise.

(> expression expression) (Function)
(< expression expression) (Function)

These functions compare numbers in the expected way.

(> (+ 2 3) 4) ⇒ t

(> (+ 2 1) 4) ⇒ nil

(equal expression expression) (Function)

Gives t if its arguments are equal (having the same values arranged in the same structure, whether
or not stored at the same memory location), nil otherwise.

(equal '(a b) (cons 'a '(b))) ⇒ t

(equal 2 (+ 1 1)) ⇒ t

(equal '(a b) '(a b c)) ⇒ nil

(and expression expression expression. . .) (Special form)

Gives the value of the last expression if all are non-nil; otherwise gives nil. Thus, you get a
non-nil value only if all the expressions evaluate to non-nil.

Procedurally, and starts evaluating the expressions from left to right until it gets a nil value
or until it runs out of expressions; then it gives you the value of the last one that it evaluated.
Expressions after the first nil one are not evaluated.

(and (listp '(a b)) (symbolp 'a)) ⇒ t

(or expression expression expression. . .) (Special form)

Gives the value of the first expression that has a non-nil value, or nil if all are nil.

Procedurally, or starts with the first expression, and evaluates expressions one by one until it
gets one that is not nil, and then stops. Thus, you get a non-nil value if at least one of the
expressions evaluates to non-nil, and the expressions after the first non-nil one are not evaluated.

(or (listp '(a b)) (symbolp '(a b))) ⇒ t

5

Decision-making

(if expression1 expression2 expression3) (Special form)

Evaluates expression1. If the result is non-nil, proceeds to evaluate expression2 ; otherwise eval-
uates expression3. Value of the whole thing is the value of the last of the arguments that was
evaluated.

Expression3 is optional.

(if (> 3 2) 'yes 'no) ⇒ yes

(if (> 2 3) 'yes 'no) ⇒ no

(if (> 2 3) 'yes) ⇒ nil

A more complex example (assuming x has been bound to a value):

(if (> x 0)

'positive

(if (< x 0)

'negative

'zero

)

)

6

Example of a Lisp program

First create your program on a text file. If using Notepad, make sure to save as ANSI or ASCII, not Unicode.

Then get into your favorite Lisp system and use load to read the program, and then the functions are yours
to use.

Important: If GNU Common Lisp gives you an error message, you must type :r to get back to a normal
Lisp prompt.

7

