NTROL, VOL. 45, NO. 7, JULY 2000

Logical Control of an Elevator with Defeasible Logic

Michael A. Covington

Abstract—The elevator control program described in this journal by
Dyck and Caines [4] can be implemented more concisely in d-Prolog, a
defeasible logic programming system developed by Nute [5], [7], [8]. To
demonstrate this, the program is recast, first into ordinary Prolog and then
into d-Prolog.

In defeasible logic, more specific rules take precedence over more general
ones. Thus, the d-Prolog programmer can state general rules and then give
explicit exceptions, just as humans do when explaining complex regularities
to each other.

Index Terms—Defaults, defeasible logic, elevator, logic modeling.

I. INTRODUCTION

Human beings find it natural to explain complex situations by stating
general rules followed by exceptions, each of which overrides the rules
that it appears to contradict. For example, birds fly, but ostriches are
birds, and ostriches don’t fly. In classical logic, these three statements
lead to a contradiction because they imply both that an ostrich flies and
that it does not fly. In defeasible logic, however, the rule about ostriches
overrides the rule about birds because it is more specific.

There are two reasons why humans use defeasible logic. First, human
knowledge is imperfect. Classical logic specifies how to reason when
all applicable facts are known with complete certainty. Defeasible rea-
soning is for reasoning when relevant facts may be unknown or uncer-
tain—the usual human situation. In defeasible logic, new information
can override earlier conclusions [5], [7], [8].

Second, defeasible knowledge representations are often more con-
cise. In classical logic, every rule must enumerate everything that could
possibly affect its conclusion. In defeasible logic, every rule has the im-
plicit provision, “unless a more specific rule applies.” As just noted, in
defeasible logic one can say “Birds fly,” and then add, “Ostriches are
birds that don’t fly,” without creating a contradiction. Crucially, it is
not necessary to go back and change the first rule to “Birds fly unless
they are ostriches.”

Like humans, automatic control systems often deal with situations
that are conveniently described in terms of general rules with specific
exceptions. The d-Prolog theorem prover [7] implements defeasible
logic as a computer programming language; it is an extension of Prolog
(8] and the full power of Prolog is available. d-Prolog programs can be
compiled into lookup tables for execution on low-end microcontrollers

121

II. THE ELEVATOR PROBLEM

Dyck and Caines [4] give a set of logical axioms for controlling an el-
eVa.tor. They assume that a separate routine, outside the theorem prover,
ff‘amtﬂins a queue of requests, each of which has a steadily increasing
. frustration level” (age). Whenever the elevator reaches a floor at which
1thas been requested to stop, the doors open and the request is removed
from the queue.

The job of the theorem prover is to deduce whether the elevator

::fuld stand still, move up, or move down, according to the following
es.

:"I;n“SCript received February 22, 1999; revised November 27, 1999. Recom-
"ded by Associate Editor, M. Polycarpou.
. € author is with the Artificial Intefligence Center, The University of
T81a, Athens, GA 30602-7415 USA (e-mail: mc@uga.edu).
blisher ftem Identifier S 0018-9286(00)06075-X.

m

1347

1) By default, stand still.

2) But if there are any requests in the queue, service the oldest re-
quest.

3) Butifthere is a request for floor 4, service it immediately because
floor 4 is the emergency entrance of a hospital.!

4) But if there is a fire, stand still (at a floor, with the doors open,
of course).

In Dyck and Caines’ implementation, rule 2) splits into four cases:
the oldest request could come from inside or outside the elevator, and it
could refer to a floor above or below the current one. Without changing
the logical nature of the problem, I make two simplifications. My ele-
vator simply takes requests to stop at particular floors, without caring
whether they come from the control panel inside the elevator or the call
buttons outside, and my theorem prover deduces what floor the elevator
should move toward, leaving it to a separate routine to decide whether
this entails going up or down.

II. DEFEASIBILITY

The defeasible structure of this set of rules is evident; each rule is
an exception to those that precede it. Dyck and Caines, using classical
logic, cannot express this defeasibility directly. Instead, each of their
control axioms specifies the conditions under which it does not apply,
as well as those under which it does. As a result, many conditions are
stated in more than one place. Schemarically, their renderings of the
four rules look like the following.

1) -Fire A “Emergency A Pf(Max) =0 — U =0.

2) -Fire A "Emergency N “Pf(Max) = 0 A PI(Max) <
Pn — U = 1 (and three other cases; the request can be for a
higher or lower floor and can come from inside or outside the
elevator).

3) A series of axioms dealing with the special status of floor 4.

4) Fire — U = 0.

Here Max is the oldest request pending; Pf(Max) is its age (frus-
tration level), 0 if there are no requests in the queue; P1(Max) or
Pd(Max) is the floor requested by Max; and Pn is the current po-
sition of the elevator; U is the control signal, 0 to stand still, 1 to go
down, and 2 to go up. Fire and Emergency are true if, respectively,
there is a fire or a request to go to the hospital (floor 4). The symbols
-, A, and — mean, respectively, “not,” “and,” and “implies.”

Simplifying the control signal so that it specifies the floor to go to,
rather than the direction of motion, these rules can be expressed in stan-
dard Prolog [3] as:

1) stop :- \+ move(_).
2) move(X) :- oldest reguest(X),
\+ requested(4,),

\+ fire.

3) move(4) :- requested(4,),
\+ fire.

4) stop :- fire.

That is: 1) stop if no move is requested; 2) move toward floor X if
it is the oldest request and there is no fire or request for floor 4 (the
hospital); 3) move toward floor 4 if it has been requested, unless there
is a fire; and 4) stop if there is a fire.

10ne might want to suppress stops at intermediate floors in this case, but
neither their algorithm nor mine does so. ;

0018-9286/00$10.00 © 2000 IEEE

1348

Here stop and move (N) (move toward floor IV) are the control
signals. Outside the program, we specify that if both stop and move
(X') (for some X) are inferred, st op takes precedence.

The symbol :- means “if;” the comma means “and;” \+ means
“not” (more precisely, “cannot derive”); and _ is a dummy variable
that matches any value. Thus, for example, \+ move (_) is true if
move (X) cannot be inferred for any value of X.

The predicate oldest request(X) means “the oldest request
in the queue is for floor X;” requested (X, F') means “there is
arequest for floor X with age (frustration level) F';” and £ire means
“there is a fire.”

The crucial drawback of Dyck and Caines’ axioms and of my Prolog
rules is that each rule mentions not only the conditions that trigger
it, but also, negatively, the conditions under which some other rule
should apply instead. For example, axioms 1) and 2) contain —~Fire
and “Emergency to ensure that axioms 3) and 4) take precedence
when there is a fire or emergency. If rules 3) and 4) would be absent,
these parts of rules 1) and 2) would be unnecessary.

IV. APPLYING DEFEASIBLE LOGIC

In d-Prolog, more specific rules automatically override less specific
rules. Thus, rules do not, in general, need to contain, negated, the con-
ditions of other rules:

1) stop := true.

2) move (X) := oldest_request (X).

3) move(4) := requested(4,),
oldest_request(_).

4) stop :- fire.

Here “:=" means “if, defeasibly;” the rest of the notation is as in Prolog.
Translated into English, these rules say:

1) By default, stop (stand still).

2) Butif oldest_request (X) is true for some X (i.e., there are
requests in the queue), move toward floor X.

3) Butif requested (4, _) istrue, move toward floor 4, regard-
less of the status of oldest_request. (Here “_” means “ig-
nore this argument”—the age of the request for floor 4 and the
floor of the oldest request.)

4) Regardless, if £ire is true, stop.

Fig. 1 shows the complete program, which also contains the decla-

ration

pairwise incompatible([stop,move(0),
move (1) ,move (2) ,move (3) ,move (4)])

to tell the theorem prover that stop, move (0) ,move (1) , etc., are
incompatible conclusions, i.e., any line of reasoning that implies that
one of them is true also implies that all of the others are false.

The theorem prover resolves conflicts as follows. Absolute (“: -")
rules always override defeasible (“:=") rules. Thus, whenever fire is
true, the theorem prover will infer stop and will not infer anything
that conflicts with stop.

‘When two defeasible rules conflict, the more specific one wins out.
For example, when cldest_ request (2) is true, the premises of
both rule 1) and rule 2) are satisfied. Rule 2) wins out because its
premise, oldest_request (X), is more specific than the premise
of rule 1), true. “More specific” means “true in a proper subset of
the situations.” Thus, rule 2) wins out beoause its premise takes more
information into account.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 7, JULY 2009

% Inputs to the logic engine
requested(3,1). % requested(Floor,Aga0fRequest)
requested(2,2).

requested(0,3).

neg fire. % is there a fire?
% Definition of "oldest request", in conventional Prolog:
oldest_request(Floor) :-

requested(Floor,Age),

\+ (requested(AnotherFloor,AnotherAge), AnotherAge > Age).
% Rules (in d-Prolog):
stop := true.
move(X) := oldest_request(X).
move(4) := requested(4,_.), oldest_request(_).
1~ fire.

stop

pairwise_incompatible([stop,move(0),move(1),move(2),

move(3) ,move(4)]).

% Code to display the results:

demo :- @@ [stop,move(0),move(l),move(2),move(3),move(4)].

Fig. 1. d-Prolog implementation of elevator control rules. i

Likewise, when oldest_request (2) and requested (4,1)
are true—that is, the oldest request is for floor 2 but there is also a¢-
quest for floor 4 with an age of 1—then rules 1), 2), and 3) are all satis- :
fied, but rule 3) wins out because it takes into account all the premises
of rules 1) and 2) plus another, more specific, premise of its own.

V. EXPLICIT SUPERIORITY

Rule 3) should say, “If there is a request for floor 4, go there.” But
if encoded as

move (4) := requested(4,_).

it will not override rule 2) because the theorem prover will not recog" :
nize it as more specific. That is why it was encoded as:

move (4) := fequested(él,_) ,
oldest _request(_).

specifically mentioning cldest_request This encoding is nature! :
in English one might say “regardless of oldest._request.” Itdot §
however, trigger an unnecessary computation to find the oldest request

One alternative is to add a premise to rule 2) instead of rule 3), thus ?

S
5

3
{
1

=

@EE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 7, JULY 2000

) move (X) := oldest_request (X),
neg requested(4,_).

) move (4) := requested(4,).

_> “(Here neg is the d-Prolog negation operator.) Now rule 2) cannot be
- “gatisfied when there is a request for floor 4, and the question of prece-
- dence does not arise. However, this encoding still lacks elegance be-
. dause the premise of rule 3) is still redundantly encoded in rule 2).

. A better alternative is to tell the inference engine explicitly which
3 rule should win out, thus:

- move (X)
: ‘VmQVE (4)

b gup((move (4) :=
SRS (move (X)

:= oldest_regquest(X).

:= requested(4,).

requested()y,
oldest_request(x))).

- - The sup declaration states explicitly that rule 3 is superior to rule 2. As
d-Prolog is presently implemented, the sup declaration has to quote, in
~ their entirety, the rules to which it applies, but a more concise notation
could easily be provided. Indeed, for programming control systems,
one may want to have a mode in which sequence determines superi-
“ority, i.¢., all later rules are superior to all the rules that precede them.

VI. BACKGROUND OF DEFEASIBLE LOGIC

i Defeasible logic is one of several kinds of nonmonotonic logic [1],
&., systems in which the set of conclusions can shrink as well as grow
hen the set of premises is enlarged. The purpose of nonmonotonic
ogic is, in general, to represent uncertain knowledge. However, I am
using it primarily to represent knowledge more concisely.

“One of the best-known nonmonotonic logic systems is the default
.. dogic of Reiter [12], in which rules have the form

A:B

C

This means, “If A is true and B could be assumed true without contra-
diction, then conclude C.” In effect, default logic adds premises to the
i Iules Thus, conciseness is not one of its advantages.

- Defeasible logic, by contrast, achieves nonmonotonicity by con-

training the inference process and was specifically designed for

tasonably efficient implementation [6], [11]. In defeasible logic,
en there are two premises with contradictory conclusions, the

- premise that is more specific (or is specified as superior) wins out.

: Thls has two advantages. First, defeasible logic can choose between

. .Conflicting defaults, thus solving some problems for which default
ogic is inadequate [6, pp. 365-367]. Second, defeasible rules have the

Conciseness advantage described at length earlier in this paper.

““For soundness and completeness results for Nute’s system, the basis

ofd-Prolog, see [9] and [10].

- E ‘The computational cost of defeasible reasoning is admittedly high,
- since in order to draw a conclusion, the inference engine must deter-
. “Hine not only that the conclusion is reachable, but also that it is not

. Gefeated by aline of inference leading to the opposite conclusion. How-

: eVCl‘ defeasible logic programs can be compiled automatically into

‘“Onventional logic programs or even into machine language. Thus, de-

easible rule sets can be viewed as the input to a program generator

. Tather than as programs to be executed directly (see [2]).

ACKNOWLEDGMENT

¢ author would like to thank D. Nute and D. Billington for assis-
Ce and encouragement.

(1}
(2]

(3]
(4]
(5}

{6]

(7

{8}
9]
[10]
{113
{12]

(13}

1349

REFERENCES

G. Brewka, J. Dix, and K. Konolige, Nonmonotonic Reasoning: An
Overview. Stanford, CA: CSLIL

M. A. Covington, “Defeasible logic on an embedded microcontroller,”
in Proc. Tenth Int. Conf. Industrial and Engineering Appl. Artificial In-
telligence and Expert Systems (IEA-AIE), 1997.

M. A. Covington, D. Nute, and A. Vellino, Prolog Programming in
Depth, second ed. Upper Saddle River, NJ: Prentice-Hall, 1997.

D. N. Dyck and P. E. Caines, “The logical control of an elevator,” I[EEE
Trans. Automat. Contr., vol. 40, pp. 480486, 1995.

D. Nute, “Basic defeasible logic,” in Intensional Logics for Program-
ming, L. Farifias del Cerro and M. Penttonen, Eds. Oxford: Oxford
University Press, 1992, pp. 125-154.

, “Defeasible logic,” in Handbook of Logic in Artificial Intelli-
gence and Logic Programming, D. M. Gabbay, C. I. Hogger, and J. A.
Robinson, Eds. Oxford: Clarendon, 1994, vol. 3, pp. 353-395.

, “d-Prolog: An implementation of defeasible logic in prolog,” in
Non-Monotonic Extensions of Logic Programming: Theory, Implemen-
tation, and Applications, J. Dix, L. M. Pereira, and T. Przymusinski, Eds:
Institut fiir Informatik, Univ. of Koblenz-Landau, 1996, pp. 161-182.

, “Defeasible prolog,” in Prolog Programming in Depth, 2nd
ed. Upper Saddle River, NJ: Prentice-Hall, 1997, pp. 345-405.

D. Nute and K. Erk, “Defeasible logic graphs—I. Theory,” Decision
Support Syst., vol. 22, pp. 277-293, 1998.

D. Nute, Z. Hunter, and C. Henderson, “Defeasible logic graphs—II.
Implementation,™ Decision Support Syst., vol. 22, pp. 295-306, 1998.
J. L. Pollock, “How to reason defeasibly,” Artif. Intell., vol. 57, pp. 1-42,
1992.

R. Reiter, “A logic for default reasoning,” Artif. Intell., vol. 13, pp.
81-132, 1980.

M. A. Covington, “Defeasible logic on an embedded mlcrocontroller
Appl. Intell., to be published.

