
The Number of Distinct Alignments of Two

Strings

Michael A. Covington

Artificial Intelligence Center

The University of Georgia

Athens, Georgia 30602–7415 U.S.A.

E-mail: mc@uga.edu

Telephone: +1 706 542-0359

Last revised 2003 February 17

1 Introduction

An alignment is a way of pairing up elements of two strings, optionally skipping some ele-

ments but preserving the order. For example,

a b c a b c a b c

| | | | | | |

x y z x y z x y z

are three of the many alignments of abc with xyz. For brevity we will write them as (abcxyz),

(abc--xyz), and (abc-x-yz) respectively. Hyphens mark skips, i.e., places where an element of one string

is paired with nothing in the other string.

This paper presents formulae for the number of distinct alignments of two strings of

lengths m and n, using various criteria of distinctness. These numbers are of practical

interest because they give the size of the search space for inexact string matching (Sankoff

and Kruskal 1983, Ukkonen 1985), DNA sequence alignment (Waterman 1995), and the first

step in comparative reconstruction of ancient languages (Kay 1964, Covington 1996, 1998).

The last of these is of greatest interest to the linguist. For example, to demonstrate the

relatedness of Latin dō ‘I give’ to Greek didōmi ‘I give’, one has to align them as

- - d ō - -

d i d ō m i

and not

d ō - - - -

d i d ō m i

d - - ō - -

d i d ō m i

- - - - d ō

d i d ō m i

1

or numerous other possibilities. The segments of two words may be misaligned because

of affixes (living or fossilized), reduplication, and sound changes that alter the number of

segments, such as elision or monophthongization. An algorithm to find the best alignment

in such situations is given by Covington (1996); this paper works out the size of the search

space.1

2 Definitions

For some purposes some alignments are equivalent to others. Consider for example the three

alignments (abcxyz), (a-bcxy-z), and (ab-cx-yz). They can be handled three ways:

• Treat all three as equivalent because the differences between them do not involve any

shifting left or right. All three alignments match a with x and c with z. In the middle

of the string, they either match b with y or skip b and y in tandem, which amounts to

the same thing.

• Treat (a-bcxy-z) and (ab-cx-yz) as equivalent to each other but distinct from (abcxyz). That is,

skipping two elements in tandem is distinct from matching them, but it does not

matter in which order the skips are performed.

• Treat all three as distinct.

These methods of counting (which we will make more precise below) yield what we will call

the small set, middle set, and large set of alignments of any given pair of strings. We

1One might think that the dynamic programming algorithm of Ukkonen (1985) makes the size
of the search space more or less irrelevant. That is not the case because dynamic programming is
not applicable to all searches for alignments. It assumes that the “badness” of any alignment is
the sum of the badness of its individual elements, and that only the one best alignment is wanted.
Sometimes, however, more than one alignment is wanted, or “badness” must be computed in some
other way (e.g., assigning a lower penalty for transpositions than for random mismatches); see
Covington (1996, 1998).

I want to thank E. Rodney Canfield for extensive help getting started with this project. I am
indebted to many colleagues with whom I discussed the problem; among them are Jeff Clark, Jan
Willem Nienhuys, Oscar Lanzi III, Les Reid, and other participants in sci.math on the Internet.

2

will call their cardinalities a(m, n), a(m, n), and A(m, n), respectively, where m and n are

the lengths of the strings.

The large set and middle set contain some null alignments that do not match up any

elements at all, such as (-a-b-cx-y-z-) and (---abcxyz---). The small set contains no null alignments.

3 Enumerating alignments

Any alignment can be constructed by working through the two strings step by step until all

the elements of both strings have been consumed. At each step, make one of three moves:

• match (accept elements from both strings together);

• skip-1 (accept an element from the first string only);

• skip-2 (accept an element from the second string only).

The number of alignments is the number of different ways this can be done.

4 The large set

The large set of alignments is the easiest to enumerate because it imposes no further restric-

tions on the construction procedure.

Let m and n be the lengths of the two strings. Recall that a match consumes an element

from both strings while a skip consumes an element from one string but not the other. Every

complete alignment has to consume all the elements, so any alignment containing k matches

must also contain m − k skips on string 1 and n − k skips on string 2.

The number of matches k in turn ranges from 0 to min(m, n). Thus, the number of

possible alignments A(m, n) is:

A(m, n) =
min(m,n)∑

k=0

number of alignments containing k matches

3

The number of alignments containing k matches is simply the number of ways of partitioning

a set of k + (m − k) + (n − k) = m + n − k moves into k matches, m − k skips on string 1,

and n − k skips on string 2:

A(m, n) =
min(m,n)∑

k=0

(m + n − k)!

k!(m − k)!(n − k)!

This is the function f of Waterman (1995, p. 187). Values are shown in Table 1. Throughout,

A(m, n) = A(n, m). The main diagonal of the matrix is the integer sequence known as M2942

in Sloane and Plouffe (1995).

5 The small set

The small set of alignments treats (abcxyz), (a-bcxy-z), and (ab-cx-yz) as equivalent. That is tantamount

to disallowing the latter two because they contain alternating skips (places where a skip

in one string is followed immediately by a skip in the other). More generally, the small set

of alignments consists of exactly those that do not contain any alternating skips.

When alternating skips are disallowed, the number of alignments (call it a(m, n), with

small a denoting the small set) is no longer a simple partitioning problem because a move

can restrict the choice of moves that can be taken next. Specifically, skip-2 cannot follow

skip-1, nor vice versa.

The problem is conveniently approached by constructing a search tree. Figure 1 show a

search tree for enumerating all the alignments of abc with xyz. The tree as shown is not

complete; rather, it invokes recursion in the places where all the alignments of two substrings

are needed. Note that, of the three possible moves at each juncture, only match leaves the

choice of subsequent moves unrestricted. The only places in the tree where recursion can be

invoked are therefore the places where matches have been made.

Redrawing and substituting recursive calls to a(m, n) to get the number of alignments,

we get the tree in Figure 2 and the equation:

a(3, 3) = a(2, 2) + [a(2, 1) + a(2, 0)] + [a(1, 2) + a(0, 2)]

4

Table 1: A(m, n): number of alignments of strings of lengths m and n not discarding any as
equivalent to others.

n
0 1 2 3 4 5 6 7 8 9 10

m 0 1
1 1 3
2 1 5 13
3 1 7 25 63
4 1 9 41 129 321
5 1 11 61 231 681 1683
6 1 13 85 377 1289 3653 8989
7 1 15 113 575 2241 7183 19825 48639
8 1 17 145 833 3649 13073 40081 108545 265729
9 1 19 181 1159 5641 22363 75517 224143 598417 1462563

10 1 21 221 1561 8361 36365 134245 433905 1256465 3317445 8097453

Blocked
(string 2 empty)

Blocked
(string 1 empty)

skip-2 (abc---)

match (abc--x)
���
���

All alignments of
empty string with yz

skip-1 (---xyz)

match (--axyz)
���
���

All alignments of
bc with empty string

All alignments of
bc with z

skip-2 (ab--) ���
���

match (ab-x) ���
���

All alignments of
c with yz

skip-1 (--xy) ���
���

match (-axy) ���
���

All alignments of
bc with yz

skip-2 (a-)
�

��

�
��

skip-1 (-x) �
��

�
��

match (ax)
���
���

start �
�
�
�
�
�
�
�
�
�

�����

	
	
	
	
	
	
	
	
	
	

Figure 1: Search tree for aligning abc with xyz without alternate skips.

5

Blocked

a(0, 2)

Blocked

a(2, 0)

skip-2

match

a(1, 2)

skip-1

match

a(2, 1)

skip-2���
���

match

skip-1���
���

match

a(2, 2)

skip-2�
��

�
��

skip-1�
��

�
��

match

start �
�
�
�
�
�
�
�
�
�

�����

	
	
	
	
	
	
	
	
	
	

a(3, 3) =

Figure 2: Search tree redrawn to show formulae.

6

where the bracketed terms reflect the whittling away of string 2 and string 1, respectively,

by skips. Here a(2, 0) = a(0, 2) = 1, because the only way to align with an empty string is

to skip all the elements of the non-empty string and quit. Likewise, for 4-element strings we

get:

a(4, 4) = a(3, 3) + [a(3, 2) + a(3, 1) + a(3, 0)] + [a(2, 3) + a(1, 3) + a(0, 3)]

or in general

a(m, n) = a(m − 1, n − 1) +
n−2∑
i=0

a(m − 1, i) +
m−2∑
i=0

a(i, n − 1)

with the initial conditions a(0, n) = a(m, 0) = 1. The three terms represent, respectively,

the case where a match is made on the first element; the case where string 2 is whittled

away by skip-1’s; and the case where string 1 is whittled away by skip-2’s. Table 2 gives

computed values, which have been checked by actually enumerating the alignments using a

Prolog program.

6 The middle set

The middle set of alignments treats (a-bcxy-z) and (ab-cx-yz) alike but distinguishes them from (abcxyz).

The crucial distinction here is that (abcxyz) matches b with y, but (a-bcxy-z) and (ab-cx-yz) do not;

instead they skip b and y in tandem.

Compared to the small set, the middle set introduces the concept of mismatch or double

skip: you can take an element from each of the two strings simultaneously without matching

them.2

Because double skips are permitted in exactly the same situations as matches, their effect

is to double the count at each of the leaf nodes of the search tree in Figures 1 and 2. (Imagine

2At first sight it might seem that the middle set could be analyzed by allowing alternating skips
in only one direction, e.g., letting a skip-2 follow a skip-1 but not vice versa. That turns out not
to be true. The alignment (a-b--x-y) consists of a skip-2, a skip-1, a skip-2, and another skip-1, but
it is a legitimate member of the middle set because it first skips a and x in tandem, then skips b
and y in tandem.

7

Table 2: a(m, n): number of alignments of strings of lengths m and n disalllowing alternating
skips.

n
0 1 2 3 4 5 6 7 8 9 10

m 0 1
1 1 1
2 1 2 3
3 1 3 5 9
4 1 4 8 15 27
5 1 5 12 24 46 83
6 1 6 17 37 75 143 259
7 1 7 23 55 118 237 450 817
8 1 8 30 79 180 380 755 1429 2599
9 1 9 38 110 267 592 1229 2421 4570 8323

10 1 10 47 149 386 899 1948 3989 7804 14698 26797

Table 3: a(m, n): number of alignments of strings of lengths m and n alllowing skips,
matches, and double skips.

n
0 1 2 3 4 5 6 7 8 9 10

m 0 1
1 1 2
2 1 4 8
3 1 6 16 36
4 1 8 28 72 164
5 1 10 44 132 336 764
6 1 12 64 224 636 1592 3620
7 1 14 88 356 1128 3092 7632 17356
8 1 16 116 536 1892 5664 15116 36920 83956
9 1 18 148 772 3024 9868 28392 74244 179856 408956

10 1 20 184 1072 4636 16456 50932 142240 366108 881080 2003204

8

a double skip alongside every match.) This, in turn, doubles the recurrence expression:

a(m, n) = 2 × (a(m − 1, n − 1) +
n−2∑
i=0

a(m − 1, i) +
m−2∑
i=0

a(i, n − 1))

where a(0, n) = a(m, 0) = 1 just as before. Because the factor of 2 is within the recurrence,

the actual number of alignments is more than doubled compared to the small set. Computed

values, verified by actual enumeration, are shown in Table 3.

This middle set of alignments is the best model of the search space for string matching

as generally conceived (e.g., by Ukkonen 1985), where the available operations are insertion

(= skip-2), deletion (= skip-1), substitution (= double skip), and exact matching (=

match).

7 A different middle set

Suppose double skips are applied to substrings rather than individual elements. In that

case, (a---bcdvwxy--z) is equivalent to (ab-c--dv-w-xyz) and (abc---dv--wxyz) among others; all of these represent the

alignment

a b c d

| |

v w x y z

in which the substrings bc and wxy are skipped in tandem.

In this situation, an alignment is defined entirely by picking the k elements of each string

that are going to be matched. They can only be matched in the order in which they occur,

so no further information about order is needed. Accordingly, much as with the large set,

a′(m, n) =
min(m,n)∑

k=0

number of alignments containing k matches

and in this case:

a′(m, n) =
min(m,n)∑

k=0




m

k







n

k




9

That is, for each k, choose k elements from the first string, and for each such combination,

choose k elements from the second string.3

This simplifies mathematically to

a′(m, n) =




m + n

m


 =




m + n

n




which can be explained intuitively as follows. Recall that the task is to choose, for some k, a

set of k matched elements in each string. Equivalently, we can choose the matched elements

in one string and the skipped elements in the other (leaving the rest to be matched). In that

case we are choosing k elements from the first string and n − k elements from the second.

Regardless of the value of k, this amounts to choosing n elements from the complete set of

m + n elements, and the number of ways of doing it is, by definition:




m + n

n


 =




m + n

(m + n) − n


 =




m + n

m




The numbers here are considerably smaller than those in Table 3. For example, a(10, 10) =

2, 003, 204, but a′(10, 10) = (20
10) = 184, 756. This is the function g of Waterman (1995, pp.

188–189)4 and of Ewens and Grant (2001, pp. 191–192).

Bibliography

Covington, Michael A. (1996). An algorithm to align words for historical comparison. Com-

putational Linguistics, 22, 481–496.

Covington, Michael A. (1998). Alignment of multiple languages for historical comparison.

In COLING-ACL ’98: 36th Annual Meeting of the Association for Computational

3The notation (ab) denotes the number of combinations of a things taken b at a time, equal to
a!

b!(a−b)! .
4The expression (n+m

k) at the top of Waterman’s page 189 is apparently a misprint; it should
be (n+m

n).

10

Linguistics and 17th International Conference on Computational Linguistics — Pro-

ceedings of the Conference (pp. 275–280). San Francisco: Kaufmann.

Ewens, Warren J. & Grant, Gregory R. (2001). Statistical methods in bioinformatics. New

York: Springer.

Kay, Martin. (1964). The logic of cognate recognition in historical linguistics. Memorandum

RM-4224-PR. Santa Monica, CA: The RAND Corporation.

Sankoff, David & Kruskal, Joseph B., eds. (1983). Time warps, string edits, and macro-

molecules: The theory and practice of sequence comparison. Reading, MA: Addison-

Wesley.

Sloane, N. J. A. & Plouffe, Simon. (1995). The encyclopedia of integer sequences. San Diego,

CA: Academic Press.

Ukkonen, Esko. (1985). Algorithms for approximate string matching. Information and Con-

trol, 64, 100–118.

Waterman, Michael S. (1995). Introduction to computational biology. London: Chapman &

Hall.

11

